рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Сетевое моделирование

Сетевое моделирование - раздел Образование, Учебное издание: Моделирование технических систем и процессов   Наиболее Часто В Области Сетевого Моделирования Рассматривают...

 

Наиболее часто в области сетевого моделирования рассматриваются две задачи, связанные с сетями: задача о кратчайшем пути и задача о максимальном потоке. Например, если в роли взвешенного орграфа выступает сеть нефтепроводов, то при решении задачи о максимальном потоке нефти через эту сеть веса, данные в скобках рядом с дугами, указывают на скорость потребления нефти и пропускную способность труб. Вершины такого орграфа представляют собой потребителей или производителей нефти, а дуги - нефтепроводы.

В случае если решается задача о кратчайшем пути, веса дуг графа задаются расстоянием между вершинами, которые эти дуги соединяют. Пусть, например, имеется топологическая карта транспортной сети из 5 дорог, соединяющих 4 населённых пункта, причём необходимо выбрать кратчайший путь из пункта x1 в пункт x4:

 

 

Рис. 17. Топологическая карта транспортной сети из 5 ветвей

 

Оказывается, используя аналогию между длиной пути Uij между пунктами i и j и электрическим напряжением Ūij между точками i и j электрической цепи, можно решать задачу о кратчайшем пути, моделируя транспортную сеть Рис. 17 следующей электрической схемой:

 

 

Рис. 18. Электрическая модель транспортной сети Рис. 17.

 

Впрочем, любая электрическая схема сама по себе представляет ориентированный и взвешенный граф. Ориентированным граф будет в силу протекающих в определённом направлении токов по разным участкам схемы. Величины токов могут играть роль весов соответствующих дуг графа, а величины напряжений - роль весов соответствующих вершин графа. Свойство постоянства потока в сети равносильно высказыванию о том, что поток в промежуточной вершине не исчезает и не возникает. Это свойство эквивалентно закону Кирхгофа для цепи постоянного тока.

Моделируя сетевые структуры, следует различать некоторые разновидности графов с экстремальными характеристиками и учитывать связанные с ними понятия. Простой цепью (а) называется граф, у которого только две вершины имеют степень, равную единице, а остальные – степень, равную двум. Цикл (б) есть граф, все вершины которого имеют степень, равную двум. Число вершин в цикле называется его длиной.

 

 

 

Рис. 19. Цепь (а) и цикл (б) в ориентированном графе.

 

Цикл и цепь задаются последовательностью вершин и рёбер, входящих в них. Граф, все вершины которого попарно смежные, называется полным. Граф, все вершины которого попарно несмежные, называется пустым. Граф называется связным, если для любых вершин Xi, Xj существует цепь, которой принадлежат вершины Xi и Xj .

 

 

 

Компонентом связности графа (а) является подграф (б):

 

Связный граф на n вершинах с минимальным числом рёбер называется деревом.

 

 

В теории графов транспортной сетью называется ориентированный связной мультиграф без петель, в котором:

1) Существует одна и только одна такая вершина х1 называемая входом сети, что g -1(x1) = 0;

2) Существует одна и только одна такая вершина хn, называемая выходом сети, что g (xn) = 0

3) Каждой дуге U графа соответствует некоторое число K(U) ≥ 0, называемое пропускной способностью дуги.

Потоком f(U) транспортной сети называется некоторая функция f(U), определённая на множестве дуг графа и удовлетворяющая свойствам:

1) f(U) ≥ 0

2) u Î Ux- ∑ f(U) – u Î Ux+ ∑ f(U) = 0 (x ¹ x1, x ¹ xn)

3) f(U) £ K(U); u Î U, где Ux-, Ux+ - множество дуг, входящих в вершину X и выходящая из неё.

Для иллюстрации методов сетевого моделирования рассмотрим задачу о максимальном потоке более подробно. Введем несколько обозначений.

1. Сеть с пропускной способностью (N, k) состоит из N узлов i, j. Упорядоченная пара узлов (i, j) называется дугой сети. Каждой дуге (i, j) приписывается определенная пропускная способность k(i, j).

2. Потоком в сети (N,k) называется функция f, сопоставляющая каждой дуге (i,j) число f(i,j) и обладающая свойствами:

f(i,j) = - f(i,j) и f(i,j) < k(i,j). Пропускная способность и потокможет характеризовать как отдельную дугу, так и всю сеть (N, k).

3. Узел а множества N называется источником потока f, если f(s, N) > 0. Узел a' называется стоком, если f(s', N) < 0. Поток с одним источником я и одним стоком а' называется потоком отs кs'. Узлы s и s' связаны сложной промежуточной сетью N.

Метод нахождения максимального потока проиллюстрируем на примере некоей гипотетической водопроводной сети, схематически представленной в виде ориентированного графа, приведенного ниже.

 

 

 

Рис. 20. Исходная сеть, исследуемая на предмет пропускной способности.

 

Числа при дугах указывают на пропускные способности соответствующих отрезков сети (в условных единицах). В соответствии с теорией графов, для удобства моделирования исходная исследуемая сеть (рис. 20) представляется матрицей пропускных способностей || k || (Табл. 1).

Таблица 1.

  s s’
s
s’

 

В этой матрице величина элемента i, j соответствует пропускной способности дуги (i, j). Для начала насыщения исходной сети возьмем поток f1 = 3, который слагается из вытекающих во всех направлениях из источника s условных единиц потока, и соответствующую ему матрицу потока || f1 ||. Эта матрица || f1 ||. вместе с ориентированным графом, соответствующим потоку f1, изображены ниже:

 
 

 

 

  S s’
s          
-1            
-1            
               
               
-1            
  -1          
s’     -1     -1 -1  

 

Знаки (-) в матрице || f1 || возникли в силу свойства № 2 определения потока. Теперь, чтобы выяснить, насколько полно поток f1 насыщает исходную сеть, вычтем f1 из k, а также соответствующие этим потокам матрицы и получим новую сеть k1 = k – f1 и новую матрицу пропускных способностей || k1 || = || k || – ‌‌|‌‌‌ | f1 ||:

  s 1 s’
s          
       
         
         
         
         
       
s’          

 

Появление в матрице || k1 || нулей говорит о появлении насыщенных дуг (s,1), (2,s') и (5,s') в результате операции вычитания. Найдем те узлы, которых можно достичь из (а), следуя по ненасыщенным дугам. Эти узлы определяются положительными элементами первой строки матрицы || k1 ||, т.е. это узлы (2) и (5). Из узлов (2) и (5) достижимы узлы (3) и (4) , из узлов (3) и (4) можно попасть в узел (6), а из него – (s').

Таким образом, одним из ненасыщенных путей является путь (s,2), (2,3), (3,6), (6,s'). Образующие этот путь элементы в матрице || k1 || обведены кружками, а элементы в квадратиках образуют путь для потока в противоположном направлении. Минимальная пропускная способность пути (s,2), (2,3), (3,6), (6,s') лимитируется дугой (2,3), значит, по нему возможен поток мощностью максимум 2 единицы. Обозначив этот поток f2 = 2, вычтем из его сети k1. Новую матрицу пропускных способностей || k2 || = || k1 || - || f2 || получим вычитанием 2 из элементов || k1 ||, обведенных кружками, и добавлением 2 к элементам, обведённым квадратами. Вот эта матрица || k2 ||:

  s 3 S’
s          
       
         
         
         
         
       
s’          

 

Еще один ненасыщенный путь из (s) в (s’) образован дугами (s,5), (5,4), (4,6), (6,s'). Он отмечен кружками в матрице || k2 ||, а обратный путь - квадратами. Минимальное сечение этого пути лимитируется дугой (4,6) и равно 1, а значит, максимальный поток по этому пути f3 = 1. Новую матрицу пропускных способностей || k3 || = || k2 || - || f3 || получим, таким образом, как ранее || k2 ||, в виде следующей таблицы:

 

  s 1 s’
s          
       
         
         
         
         
       
s’          

 

Единственный оставшийся ненасыщенным путь из (s) в (s’) отмечен кружками в матрице ||k3||. Это путь (s,5), (5,4), (4,1), (1,6), (6,s'). Максимальный поток f4 = 1 по этому пути лимитируется дугами (4,1) и (1,6). Производя снова операцию вычитания потока f4, получим последнюю матрицу пропускных способностей ||k4|| = || k3 || - || f4 ||:

Таблица 2.

  s 2 s’
s          
       
         
         
         
         
       
s’          

 

Выделенные кружками узлы, которых можно достичь, исходя из (s), не включают узел (s’). Значит, невозможно более никакого потока в этой сети. Полный поток, насыщающий исходную сеть k (рис.20), слагается из найденных частичных потоков:

fмакс = f1 + f2 + f3 + f4 = 3 + 2 + 1 + 1 = 7.

 

Матрицу максимального потока || fмакс || = || k || - || k4 || получим вычитанием последней матрицы пропускных способностей (Табл. 2) из исходной матрицы (Табл.1):

Рис. 21. Матрица || fмакс || и соответствующий ей поток fмакс.

 

Полный поток, вытекающий из (s), равный сумме элементов первой строки || fмакс ||, равен полному стоку в (s’), т. е. сумме элементов последнего столбца, и оказывается равным 7 условных единиц. Интересно отметить, что отсутствует вклад дуги (1,2) в полный поток, хотя она обладает единичной пропускной способностью.

 

– Конец работы –

Эта тема принадлежит разделу:

Учебное издание: Моделирование технических систем и процессов

ББК... Рецензент член УМС Си РУМЦ по информатике и вычислительной технике доктор физико математических наук профессор зав кафедрой моделирования и оптимизации...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Сетевое моделирование

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ОСНОВНЫЕ ЭТАПЫ МОДЕЛИРОВАНИЯ СИСТЕМ
  В наше время, когда почти забыты некогда широко применяемые для моделирования различных систем аналоговые ЭВМ, а исследователи стремятся по возможности избежать натурного моделирова

Построение концептуальной модели системы и её формализация
  На первом этапе проведения моделирования конкретного объекта (системы) необходимо построить концептуальную (содержательную) модель Мк процесса функционирования этой систе

Алгоритмизация модели и ее компьютерная реализация
  На втором этапе моделирования системы математическая модель, сформированная на первом этапе, воплощается в кон­кретную компьютерную модель Мм. Второй этап моделирования п

Получение и интерпретация результатов моделирования
  На третьем этапе моделирования компьютер используется для проведения рабочих расчетов по уже составленной и отлаженной программе. Результаты этих расчетов позволяют провести анализ

Моделирование систем массового обслуживания.
В предыдущем разделе этапы моделирования были рассмотрены на примере такой технической системы, которую можно отнести к системам массового обслуживания (СМО). Такого рода системы очень распростране

Системный анализ СМО
  Вышеприведенные формулы получены при допущении экспоненциального закона распределения времени обслуживания для значительного упрощения исследования систем массового обслуживания. Эт

Статистический анализ СМО.
  Статистическое моделирование являет­ся неотъемлемой частью разработки математической модели реальной системы. В общем виде модель может существовать сама по себе, но приведение ее в

Операционный анализ СМО.
  Существование в теории массового обслуживания задач операционной направленности и позволяет считать эту теорию одним из разделов исследования операций. Разумеется, некоторые из опер

Имитационное моделирование.
  Имитационный эксперимент представляет собой некоторую вычислительную процедуру, проводимую в том случае, если невозможно сформулировать задачу в виде математической модели специальн

Моделирование работы сборочного цеха с программированием на языке высокого уровня.
Допустим, перед нами стоит задача оценки страховых заделов на участке комплектации сборочного цеха (более подробно с понятиями, встречающимися далее, можно о­знакомиться, напр., в [2]). Словесно за

Моделирование работы ремонтного цеха с использованием языка имитационного моделирования систем.
  Продемонстрируем теперь принципы построения и проведения дискретного имитационного эксперимента с использованием языка имитационного моделирования систем на примере ремонтного цеха

Моделирование процессов во времени.
Хотя при изучении процессов, протекающих во времени, теоретически они подразделяются на детерминированные и стохастические, строго говоря, в природе не существует абсолютно детерминированных процес

Моделирование эволюции систем на основе теории Марковских процессов
Марковские процессы и процессы восстановления являются наиболее распространенными процессами, протекающими в системах массового обслуживания. Марковские СМО (системы с пуассоновским входным потоком

Анализ процессов с помощью временных рядов
Временной ряд представляет собой ряд наблюдений за каким-то определенным параметром изучаемой системы в дискретные, равноотстоящие моменты времени. Особый интерес при этом представляет проблема про

Оценка точности регрессионных моделей.
Наиболее просто оценка точности результатов моделирования производится для моделей типа «черного ящика», или моделей типа «вход-выход», если модель системы удается представить системой линейных рег

Сетевое планирование.
В предыдущем параграфе объект, предназначенный для моделирования, представлялся в виде ориентированной сети. Если дуги и узлы некоторой ориентированной сети соотнести с производимыми работами и про

Динамическое программирование при моделировании в сетях.
  При моделировании сетевых структур помимо задач, связанных с существованием потоков в транспортных, электрических, телефонных, компьютерных и прочих видах сетей, возникает целый кла

Паспортные данные, схемы исследуемых блоков и анализ возможных неисправностей.
Предварительно для моделирования необходимо получить исходную информацию. В данном случае такой информацией были показания потенциометра автоконтроля плотности топлива в исследуемых блоках. Ниже пр

Анализ и прогноз для блока ШБ3Бт
  Для анализа функционирования исследуемых блоков использовались два метода математического моделирования: «Временные ряды» и «Марковские процессы».   а) Анализ

Анализ и прогноз работоспособности для блока ШБ4Бт
1) Проанализируем технический паспорт № 555.4433.539т ПС на блок №110115 (изделие ШБ4Бт), где зафиксированы движение изделия в эксплуатации и его поломки:  

Описание объекта моделирования.
  Учрежденческая АТС Нicоm 353 фирмы Simens представляет собой автоматическую телефонную станцию с 384 портами, т. е. она может иметь 384 внутренних абонента. Станция состоит из базов

Концептуальная модель системы и методы исследования.
  Моделирование работы станции Нicоm 353 возможно на основе разделов «Массовое обслуживание» и «Теория очередей», поскольку станция Нicоm 353 представляет собой типичный пример систем

Получение результатов моделирования для группы №1.
  Число каналов в группе : n = 3 Номера внешних линий 10, 36, 9   Дата   Канал   Время, с. &

Получение результатов моделирования для группы № 2.
  Число каналов в группе n = 6 Номера внешних линий 12, 18, 15, 14, 13, 16   Дата   Канал   Вр

Получение результатов моделирования для группы № 5.
  Число каналов в группе : n = 4 Номера внешних линий 8, 7, 6, 5   Дата   Канал   Время, с.

Основные регламентные работы перед проведением техобслуживания.
  №/№   РЕГЛАМЕНТНАЯ РАБОТА   Подсистема автомобиля Длительность П

Краткое описание последовательности основных регламентных работ
  Проверка начинается с рулевого управления на наличие свободного хода руля. Затем «протягиваются» рулевые тяги. При необходимости доливается жидкость в бачок гидроусилителя руля. Зам

ЗАКЛЮЧЕНИЕ
  Давно прошли те времена, когда создатели собранной «на коленках» техники могли оценивать её работу «на глаз и на слух». Сложнейшая техника наших дней, а тем более техника аэрокосмич

Л И Т Е Р А Т У Р А
1. Четвериков В.Н. Подготовка и телеобработка данных. М., Высшая Школа, 1981. 2. Древс Ю.Г., Золотарёв В.В. Имитационное моделирование и его приложения. М., 1981. 3. Советов Б.Я.,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги