рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Проектирование реляционных БД с использованием принципов нормализации

Проектирование реляционных БД с использованием принципов нормализации - раздел Программирование, База данных Сначала Будет Рассмотрен Классический Подход, При Котором Весь Процесс Проект...

Сначала будет рассмотрен классический подход, при котором весь процесс проектирования производится в терминах реляционной модели данных методом последовательных приближений к удовлетворительному набору схем отношений. Исходной точкой является представление ПО в виде одного или нескольких отношений, и на каждом шаге проектирования производится некоторый набор схем отношений, обладающих лучшими свойствами. Процесс проектирования представляет собой процесс нормализации схем отношений, причем каждая следующая нормальная форма обладает свойствами лучшими, чем предыдущая.

В теории реляционных баз данных обычно выделяется следующая последовательность нормальных форм:

  • первая нормальная форма (1NF);
  • вторая нормальная форма (2NF);
  • третья нормальная форма (3NF);
  • нормальная форма Бойса-Кодда (BCNF);
  • четвертая нормальная форма (4NF);
  • пятая нормальная форма (5NF или PJ/NF).

Основные свойства нормальных форм:

  • каждая следующая нормальная форма в некотором смысле лучше предыдущей;
  • при переходе к следующей нормальной форме свойства предыдущих нормальных свойств сохраняются.

В основе процесса проектирования лежит метод нормализации, декомпозиция отношения, находящегося в предыдущей нормальной форме, в два или более отношения, удовлетворяющих требованиям следующей нормальной формы.

Наиболее важные на практике нормальные формы отношений основываются на фундаментальном в теории реляционных баз данных понятии функциональной зависимости. Для дальнейшего изложения нам потребуются несколько определений.

Определение 1. Функциональная зависимость

В отношении R атрибут Y функционально зависит от атрибута X (X и Y могут быть составными) в том и только в том случае, если каждому значению X соответствует в точности одно значение Y: R.X ->R.Y.

Определение 2. Полная функциональная зависимость

Функциональная зависимость R.X ->R.Y называется полной, если атрибут Y не зависит функционально от любого точного подмножества X.

Определение 3.Транзитивная функциональная зависимость

Функциональная зависимость R.X -> R.Y называется транзитивной, если существует такой атрибут Z, что имеются функциональные зависимости R.X -> R.Z и R.Z -> R.Y и отсутствует функциональная зависимость R.Z -/-> R.X.

Определение 4. Неключевой атрибут

Неключевым атрибутом называется любой атрибут отношения, не входящий в состав первичного ключа (в частности, первичного).

Определение 5. Взаимно независимые атрибуты

Два или более атрибута взаимно независимы, если ни один из этих атрибутов не является функционально зависимым от других.

Поскольку требование первой нормальной формы является базовым требованием классической реляционной модели данных, мы будем считать, что исходный набор отношений уже соответствует этому требованию, т.е. все атрибуты атомарны. Если таблица содержит составные атрибуты, то привести ее к 1NF можно, используя алгоритм нормализации, предложенный Э. Коддом:

  1. начиная с исходной таблицы, берется ее первичный ключ и добавляется в каждую подчиненную таблицу (составной атрибут);
  2. первичный ключ каждого расширенной таблицы состоит из первичного ключа подчиненной таблицы и добавленного родительского первичного ключа;
  3. после этого из родительской таблицы вычеркиваются все непростые атрибуты, и эта процедура повторяется для каждой из подчиненных таблиц;
  4. условие окончания алгоритма - атомарность всех атрибутов.

Пример 5.1 Рассмотрим в качестве предметной области некоторую организацию, выполняющую некоторые проекты. Модель предметной области опишем следующим неформальным текстом:

  1. Сотрудники организации выполняют проекты.
  2. Проекты состоят из нескольких заданий.
  3. Каждый сотрудник может участвовать в одном или нескольких проектах, или временно не участвовать ни в каких проектах.
  4. Над каждым проектом может работать несколько сотрудников, или временно проект может быть приостановлен, тогда над ним не работает ни один сотрудник.
  5. Над каждым заданием в проекте работает ровно один сотрудник.
  6. Каждый сотрудник числится в одном отделе.
  7. Каждый сотрудник имеет телефон, находящийся в отделе сотрудника.

В ходе дополнительного уточнения того, какие данные необходимо учитывать, выяснилось следующее:

  1. О каждом сотруднике необходимо хранить табельный номер. Табельный номер является уникальным для каждого сотрудника.
  2. Каждый отдел имеет уникальный номер.
  3. Каждый проект имеет номер. Номер проекта является уникальным.
  4. Каждое задание из проекта имеет номер, уникальный в пределах проекта.

Представим схему отношения (вся информация в одной таблице):

СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ

(СОТР_НОМЕР, СОТР_ЗАРП, ОТД_НОМЕР, ПРО_НОМЕР, СОТР_ЗАДАН)

Первичный ключ:

СОТР_НОМЕР, ПРО_НОМЕР

Функциональные зависимости:

СОТР_НОМЕР -> СОТР_ЗАРП

СОТР_НОМЕР -> ОТД_НОМЕР

ОТД_НОМЕР -> СОТР_ЗАРП

СОТР_НОМЕР, ПРО_НОМЕР -> СОТР_ЗАДАН

Как видно, хотя первичным ключом является составной атрибут СОТР_НОМЕР, ПРО_НОМЕР, атрибуты СОТР_ЗАРП и ОТД_НОМЕР функционально зависят от части первичного ключа, атрибута СОТР_НОМЕР. В результате мы не сможем вставить в отношение СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ кортеж, описывающий сотрудника, который еще не выполняет никакого проекта (первичный ключ не может содержать неопределенное значение). При удалении кортежа мы не только разрушаем связь данного сотрудника с данным проектом, но утрачиваем информацию о том, что он работает в некотором отделе. При переводе сотрудника в другой отдел мы будем вынуждены модифицировать все кортежи, описывающие этого сотрудника, или получим несогласованный результат. Такие неприятные явления называются аномалиями схемы отношения. Они устраняются путем нормализации.

Определение 6. Вторая нормальная форма (в этом определении предполагается, что единственным ключом отношения является первичный ключ)

Отношение R находится во второй нормальной форме (2NF) в том и только в том случае, когда находится в 1NF, и каждый не ключевой атрибут полностью зависит от первичного ключа.

Можно произвести следующую декомпозицию отношения СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ в два отношения СОТРУДНИКИ-ОТДЕЛЫ и СОТРУДНИКИ-ПРОЕКТЫ:

СОТРУДНИКИ-ОТДЕЛЫ (СОТР_НОМЕР, СОТР_ЗАРП, ОТД_НОМЕР)

Первичный ключ:

СОТР_НОМЕР

Функциональные зависимости:

СОТР_НОМЕР -> СОТР_ЗАРП

СОТР_НОМЕР -> ОТД_НОМЕР

ОТД_НОМЕР -> СОТР_ЗАРП

СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, ПРО_НОМЕР, СОТР_ЗАДАН)

Первичный ключ:

СОТР_НОМЕР, ПРО_НОМЕР

Функциональные зависимости:

СОТР_НОМЕР, ПРО_НОМЕР -> CОТР_ЗАДАН

Каждое из этих двух отношений находится в 2NF, и в них устранены отмеченные выше аномалии (легко проверить, что все указанные операции выполняются без проблем).

Рассмотрим еще раз отношение СОТРУДНИКИ-ОТДЕЛЫ, находящееся в 2NF. Заметим, что функциональная зависимость СОТР_НОМЕР -> СОТР_ЗАРП является транзитивной; она является следствием функциональных зависимостей СОТР_НОМЕР -> ОТД_НОМЕР и ОТД_НОМЕР -> СОТР_ЗАРП. Другими словами, заработная плата сотрудника на самом деле является характеристикой не сотрудника, а отдела, в котором он работает (это не очень естественное предположение, но достаточное для примера).

В результате мы не сможем занести в базу данных информацию, характеризующую заработную плату отдела, до тех пор, пока в этом отделе не появится хотя бы один сотрудник (первичный ключ не может содержать неопределенное значение). При удалении кортежа, описывающего последнего сотрудника данного отдела, мы лишимся информации о заработной плате отдела. Чтобы согласованным образом изменить заработную плату отдела, мы будем вынуждены предварительно найти все кортежи, описывающие сотрудников этого отдела. Т.е. в отношении СОТРУДИКИ-ОТДЕЛЫ по-прежнему существуют аномалии. Их можно устранить путем дальнейшей нормализации.

Определение 7. Третья нормальная форма (определение дается в предположении существования единственного ключа.)

Отношение R находится в третьей нормальной форме (3NF) в том и только в том случае, если находится в 2NF и каждый не ключевой атрибут не транзитивно зависит от первичного ключа.

Можно произвести декомпозицию отношения СОТРУДНИКИ-ОТДЕЛЫ в два отношения СОТРУДНИКИ и ОТДЕЛЫ:

СОТРУДНИКИ (СОТР_НОМЕР, ОТД_НОМЕР)

Первичный ключ:

СОТР_НОМЕР

Функциональные зависимости:

СОТР_НОМЕР -> ОТД_НОМЕР

ОТДЕЛЫ (ОТД_НОМЕР, СОТР_ЗАРП)

Первичный ключ:

ОТД_НОМЕР

Функциональные зависимости:

ОТД_НОМЕР -> СОТР_ЗАРП

Каждое из этих двух отношений находится в 3NF и свободно от отмеченных аномалий.

Если отказаться от того ограничения, что отношение обладает единственным ключом, то определение 3NF примет следующую форму:

Определение 7*

Отношение R находится в третьей нормальной форме (3NF) в том и только в том случае, если находится в 2NF, и каждый не ключевой атрибут не является транзитивно зависимым от какого-либо ключа R.

На практике третья нормальная форма схем отношений достаточна в большинстве случаев, и приведением к третьей нормальной форме процесс проектирования реляционной базы данных обычно заканчивается.

Однако иногда полезно продолжить процесс нормализации.

Пример 5.2 Рассмотрим следующий пример схемы отношения:

СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, СОТР_ИМЯ, ПРО_НОМЕР, СОТР_ЗАДАН)

Возможные ключи:

СОТР_НОМЕР, ПРО_НОМЕР

СОТР_ИМЯ, ПРО_НОМЕР

Функциональные зависимости:

СОТР_НОМЕР -> CОТР_ИМЯ

СОТР_НОМЕР -> ПРО_НОМЕР

СОТР_ИМЯ -> CОТР_НОМЕР

СОТР_ИМЯ -> ПРО_НОМЕР

СОТР_НОМЕР, ПРО_НОМЕР -> CОТР_ЗАДАН

СОТР_ИМЯ, ПРО_НОМЕР -> CОТР_ЗАДАН

В этом примере мы предполагаем, что личность сотрудника полностью определяется как его номером, так и именем (это снова не очень жизненное предположение, но достаточное для примера).

В соответствии с определением 7* отношение СОТРУДНИКИ-ПРОЕКТЫ находится в 3NF. Однако тот факт, что имеются функциональные зависимости атрибутов отношения от атрибута, являющегося частью первичного ключа, приводит к аномалиям. Например, для того, чтобы изменить имя сотрудника с данным номером согласованным образом, нам потребуется модифицировать все кортежи, включающие его номер.

Определение 8. Детерминант

Детерминант - любой атрибут, от которого полностью функционально зависит некоторый другой атрибут.

Определение 9. Нормальная форма Бойса-Кодда

Отношение R находится в нормальной форме Бойса-Кодда (BCNF) в том и только в том случае, если каждый детерминант является возможным ключом.

Очевидно, что это требование не выполнено для отношения СОТРУДНИКИ-ПРОЕКТЫ. Можно произвести его декомпозицию к отношениям СОТРУДНИКИ и СОТРУДНИКИ-ПРОЕКТЫ:

СОТРУДНИКИ (СОТР_НОМЕР, СОТР_ИМЯ)

Возможные ключи:

СОТР_НОМЕР

СОТР_ИМЯ

Функциональные зависимости:

СОТР_НОМЕР -> CОТР_ИМЯ

СОТР_ИМЯ -> СОТР_НОМЕР

СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, ПРО_НОМЕР, СОТР_ЗАДАН)

Возможный ключ:

СОТР_НОМЕР, ПРО_НОМЕР

Функциональные зависимости:

СОТР_НОМЕР, ПРО_НОМЕР -> CОТР_ЗАДАН

Возможна альтернативная декомпозиция, если выбрать за основу СОТР_ИМЯ. В обоих случаях получаемые отношения СОТРУДНИКИ и СОТРУДНИКИ-ПРОЕКТЫ находятся в BCNF, и им не свойственны отмеченные аномалии.

Пример 5.3 Рассмотрим пример следующей схемы отношения:

ПРОЕКТЫ (ПРО_НОМЕР, ПРО_СОТР, ПРО_ЗАДАН)

Отношение ПРОЕКТЫ содержит номера проектов, для каждого проекта список сотрудников, которые могут выполнять проект, и список заданий, предусматриваемых проектом. Сотрудники могут участвовать в нескольких проектах, и разные проекты могут включать одинаковые задания.

Каждый кортеж отношения связывает некоторый проект с сотрудником, участвующим в этом проекте, и заданием, который сотрудник выполняет в рамках данного проекта (мы предполагаем, что любой сотрудник, участвующий в проекте, выполняет все задания, предусмотренные этим проектом). По причине сформулированных выше условий единственным возможным ключом отношения является составной атрибут ПРО_НОМЕР, ПРО_СОТР, ПРО_ЗАДАН, и нет никаких других детерминантов. Следовательно, отношение ПРОЕКТЫ находится в BCNF. Но при этом оно обладает недостатками: если, например, некоторый сотрудник присоединяется к данному проекту, необходимо вставить в отношение ПРОЕКТЫ столько кортежей, сколько заданий в нем предусмотрено.

Определение 10. Многозначные зависимости

В отношении R (A, B, C) существует многозначная зависимость R.A -> -> R.B в том и только в том случае, если множество значений B, соответствующее паре значений A и C, зависит только от A и не зависит от С.

В отношении ПРОЕКТЫ существуют следующие две многозначные зависимости:

ПРО_НОМЕР -> -> ПРО_СОТР

ПРО_НОМЕР -> -> ПРО_ЗАДАН

Легко показать, что в общем случае в отношении R (A, B, C) существует многозначная зависимость R.A -> -> R.B в том и только в том случае, когда существует многозначная зависимость R.A -> -> R.C.

Дальнейшая нормализация отношений, подобных отношению ПРОЕКТЫ, основывается на следующей теореме:

Теорема Фейджина

Отношение R (A, B, C) можно спроецировать без потерь в отношения R1 (A, B) и R2 (A, C) в том и только в том случае, когда существует MVD A -> -> B | C.

Под проецированием без потерь понимается такой способ декомпозиции отношения, при котором исходное отношение полностью и без избыточности восстанавливается путем естественного соединения полученных отношений.

Определение 11. Четвертая нормальная форма

Отношение R находится в четвертой нормальной форме (4NF) в том и только в том случае, если в случае существования многозначной зависимости A -> -> B все остальные атрибуты R функционально зависят от A.

В нашем примере можно произвести декомпозицию отношения ПРОЕКТЫ в два отношения ПРОЕКТЫ-СОТРУДНИКИ и ПРОЕКТЫ-ЗАДАНИЯ:

ПРОЕКТЫ-СОТРУДНИКИ (ПРО_НОМЕР, ПРО_СОТР)

ПРОЕКТЫ-ЗАДАНИЯ (ПРО_НОМЕР, ПРО_ЗАДАН)

Оба эти отношения находятся в 4NF и свободны от отмеченных аномалий.

Во всех рассмотренных до этого момента нормализациях производилась декомпозиция одного отношения в два. Иногда это сделать не удается, но возможна декомпозиция в большее число отношений, каждое из которых обладает лучшими свойствами.

Пример 5.4 Рассмотрим, например, отношение

СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ (СОТР_НОМЕР, ОТД_НОМЕР, ПРО_НОМЕР)

Предположим, что один и тот же сотрудник может работать в нескольких отделах и работать в каждом отделе над несколькими проектами. Первичным ключом этого отношения является полная совокупность его атрибутов, отсутствуют функциональные и многозначные зависимости.

Поэтому отношение находится в 4NF. Однако в нем могут существовать аномалии, которые можно устранить путем декомпозиции в три отношения.

Определение 12. Зависимость соединения

Отношение R (X, Y, ..., Z) удовлетворяет зависимости соединения * (X, Y, ..., Z) в том и только в том случае, когда R восстанавливается без потерь путем соединения своих проекций на X, Y, ..., Z.

Определение 13. Пятая нормальная форма

Отношение R находится в пятой нормальной форме (нормальной форме проекции-соединения - PJ/NF) в том и только в том случае, когда любая зависимость соединения в R следует из существования некоторого возможного ключа в R.

Введем следующие имена составных атрибутов:

СО = {СОТР_НОМЕР, ОТД_НОМЕР}

СП = {СОТР_НОМЕР, ПРО_НОМЕР}

ОП = {ОТД_НОМЕР, ПРО_НОМЕР}

Предположим, что в отношении СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ существует зависимость соединения:

* (СО, СП, ОП)

На примерах легко показать, что при вставках и удалениях кортежей могут возникнуть проблемы. Их можно устранить путем декомпозиции исходного отношения в три новых отношения:

СОТРУДНИКИ-ОТДЕЛЫ (СОТР_НОМЕР, ОТД_НОМЕР)

СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, ПРО_НОМЕР)

ОТДЕЛЫ-ПРОЕКТЫ (ОТД_НОМЕР, ПРО_НОМЕР)

Пятая нормальная форма - это последняя нормальная форма, которую можно получить путем декомпозиции. Ее условия достаточно нетривиальны, и на практике 5NF не используется. Заметим, что зависимость соединения является обобщением как многозначной зависимости, так и функциональной зависимости.

Замечание. Если отношения не нормализованы, то возникает проблемы избыточности, потенциальной противоречивости (аномалии обновления), аномалии включения, аномалии удаления.

 

– Конец работы –

Эта тема принадлежит разделу:

База данных

На сайте allrefs.net читайте: "База данных"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Проектирование реляционных БД с использованием принципов нормализации

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Данные и ЭВМ
Восприятие реального мира можно соотнести с последовательностью разных, хотя иногда и взаимосвязанных, явлений. С давних времен люди пытались описать эти явления (даже тогда, когда не могли их поня

Поколения СУБД и направления исследований
Принято выделять три поколения СУБД: I. Поколение. Сетевые и иерархические системы БД, широко распространенные в 70-е годы, получили название - системы БД первого поколени

Терминология в СУБД
В общеотраслевых руководящих материалах по созданию банков данных Государственного комитета по науке и технике, изданных в 1982 г., приводятся следующие определения основных понятий:

Инфологические Даталогические Физические
  модель документальные фактографические основанные основанные сущность-связь (ER) на файловых на странично- структу

Структуры данных
База данных, организованная с помощью инвертированных списков, похожа на реляционную БД, но с тем отличием, что хранимые таблицы и пути доступа к ним видны пользователям. При этом: - строк

Манипулирование данными
Поддерживаются два класса операторов: Операторы, устанавливающие адрес записи, среди которых: прямые поисковые операторы (например, найти первую запись таблицы п

Иерархические структуры данных
Иерархическая модель данных (ИМД) свойственна многим реальным древовидным структурам (классификаторы, структуры управления и т. п.). Существуют графовая и табличная формы представления данны

Сетевые структуры данных
Сетевой подход к организации данных является расширением иерархического. В иерархических структурах запись-потомок должна иметь в точности одного предка; в сетевой структуре данных потомок может им

Манипулирование данными
Примерный набор операций может быть следующим: найти конкретную запись в наборе однотипных записей (инженера Сидорова); перейти от предка к первому потомку по некоторой свя

Ограничения целостности
В принципе их поддержание не требуется, но иногда требуют целостности по ссылкам (как в иерархической модели).   Достоинства ранних СУБД: развитые средства упр

Физические модели организации баз данных
Физические модели определяет способ размещения данных в среде хранения и способы доступа к этим данным, которые поддерживаются на физическом уровне. Среди самых важных характеристик любой ба

Файловые структуры, используемые для хранения данных в БД
На устройствах последовательного доступа (магнитофоны, стримеры) могут быть организованы файлы только последовательного доступа. Файлы с переменной длиной записи также всегда являются файлам

Модели страничной организации данных в современных БД
Реляционные СУБД хранят следующие разновидности объектов во внешней памяти БД: строки таблиц - основная часть БД; управляющие структуры - индексы, создаваемые по инициативе

Этапы доступа к БД
  Опишем последовательность действий при доступе к БД (см. рис. 2.7): Сначала в СУБД определяется искомая запись, а затем для ее извлечения запрашивается диспетчер файл

Вопросы и упражнения для самоконтроля к главе 2
Чем даталогические документальные модели отличаются от фактографических? Приведите примеры даталогических документальных моделей. Какие компоненты входят в структуру логичес

Базовые понятия реляционных баз данных
Реляционные (от английского слова relation – отношение) модели были разработаны Э. Коддом в начале 70-х годов. Основными понятиями реляционных баз данных являются тип данных, домен, атрибут, кортеж

Тип данных
Понятие тип данных в реляционной модели данных полностью адекватно понятию типа данных в языках программирования. Обычно в современных реляционных БД допускается хранение данных следующих ти

Кортеж, отношение, ключи
Кортеж, соответствующий данной схеме отношения, - это множество пар {имя атрибута - значение}, которое содержит одно вхождение каждого имени атрибута, принадлежащего схеме отношения. "З

Связи в реляционных базах данных
В реляционных БД связи позволяют избежать избыточности данных. Связь работает путем сопоставления данных ключевых столбцов. В большинстве случаев связь сопоставляет первичный ключ одной таблицы с в

Отсутствие кортежей-дубликатов
То свойство, что отношения не содержат кортежей-дубликатов, следует из определения отношения как множества кортежей. В классической теории множеств по определению каждое множество состоит из различ

Отсутствие упорядоченности кортежей
Свойство отсутствия упорядоченности кортежей отношения также является следствием определения отношения-экземпляра как множества кортежей. Отсутствие требования к поддержанию порядка на множестве ко

Отсутствие упорядоченности атрибутов
Атрибуты отношений не упорядочены, поскольку по определению схема отношения есть множество пар {имя атрибута – имя домена}. Для ссылки на значение атрибута в кортеже отношения всегда используется и

Атомарность значений атрибутов
Значения всех атрибутов являются атомарными. Это следует из определения домена как потенциального множества значений простого типа данных, т.е. среди значений домена не могут содержаться множества

Характеристика реляционной модели данных
Наиболее распространенная трактовка реляционной модели данных, по-видимому, принадлежит Дейту К., который воспроизводит ее (с различными уточнениями) практически во всех своих книгах. Согласно Дейт

Трехзначная логика (3VL)
В подходе 2 (п.3.3) использовано понятие «неопределенного» значения ключа. В реальном мире часто встречается ситуация, когда данные неизвестны или неполны. Для того чтобы обойти проблему неполных и

Реляционная алгебра
Вторая часть реляционной модели, манипуляционная часть, утверждает, что доступ к реляционным данным осуществляется при помощи реляционной алгебры или эквивалентного ему реляционного исчисления.

Особенности операций реляционной алгебры
Хотя в основе теоретико-множественной части реляционной алгебры лежит классическая теория множеств, соответствующие операции реляционной алгебры обладают некоторыми особенностями. Начнем с

Реляционное исчисление
Пример 3.11 Предположим, что мы работаем с базой данных, обладающей схемой СОТРУДНИКИ (СОТР_НОМ, СОТР_ИМЯ, СОТР_ЗАРП, ОТД_НОМ) и ОТДЕЛЫ (ОТД_НОМ, ОТД_КОЛ, ОТД_НАЧ), и хотим узнать име

Вопросы и упражнения для самоконтроля к главе 3
1. Чем отличается домен от типа данных? 2. Что такое степень отношения? 3. В чем отличие схемы отношения от отношения? 4. Можно ли считать любую прямоугольную таблицу дан

История языка SQL
Увеличение объема и структурной сложности хранимых данных, расширение круга пользователей информационных систем привели к широкому распространению наиболее удобных и сравнительно простых для понима

Структура языка SQL
Основу языка SQL составляют операторы, условно разбитые на несколько групп по выполняемым функциям. Можно выделить следующие группы операторов (перечислены не все операторы SQL):

Создание простых запросов
Оператор SELECT является фактически самым важным для пользователя и самым сложным оператором SQL. Он предназначен для выборки данных из таблиц, т.е. он, собственно, и реализует одно их основных наз

Агрегирование данных в запросах
В SQL существует ряд специальных стандартных функций (SQL-функций). Кроме специального случая COUNT(*) каждая из этих функций оперирует совокупностью значений столбца некоторой таблицы и создает ед

Формирование запросов на основе соединения таблиц
Очевидно, что с помощью соединения несложно сформировать запрос на обработку данных из нескольких таблиц. Кроме того, в такой запрос можно включить любые части предложения SELECT, рассмотренные ран

Формирование структур вложенных запросов
Следует отметить, что SQL обладает большой избыточностью в том смысле, что он часто предоставляет несколько различных способов формулировки одного и того же запроса. Очень удобным средство

Простые подзапросы
Рассмотрим простые подзапросы. Пример 4.27 Предположим, что известно имя продавца (Мотика), но неизвестно значение его поля snum, и необходимо извлечь все его порядки из таблицы

Объединение нескольких запросов в один
Напоминаем, что реляционная операция объединение позволяет получить отношение, состоящее из всех строк, входящих в одно или оба объединяемых отношений. Но при этом исходные отношения или их объедин

Проблемы параллельной работы транзакций
Современные многопользовательские системы допускают одновременную работу большого числа пользователей. При этом, если не предпринимать специальных мер, транзакции будут мешать друг другу. Этот эффе

Вопросы и упражнения для самоконтроля к главе 4
1. Сколько версий языка SQL было принято? 2. Используется ли в какой-либо СУБД язык SQL в том виде, как он описан в стандарте? 3. Что означает символ «*» в операторе SELECT?

Применение семантических моделей при проектировании
Широкое распространение реляционных СУБД и их использование в самых разнообразных приложениях показывает, что реляционная модель данных достаточна для моделирования предметных областей. Однако прое

Практические рекомендации по проектированию БД
Только небольшие организации могут обобществить данные в одной полностью интегрированной базе данных. Чаще всего администратор баз данных (даже, если это группа лиц) практически не в состоянии охва

Вопросы и упражнения для самоконтроля к главе 5
Что является исходной информацией на первом шаге процесса проектирования классическим методом? Какие нормальные формы вы знаете? Приведение к какой нормальной форме считаетс

Непосредственное управление данными во внешней памяти
Эта функция включает обеспечение необходимых структур внешней памяти как для хранения данных, непосредственно входящих в БД, так и для служебных целей, например, для ускорения доступа к данным в не

Управление буферами оперативной памяти
СУБД обычно работают с БД значительного размера; этот размер чаще всего существенно больше доступного объема оперативной памяти. При обращении к любому элементу данных во время обмена с внешней пам

Управление транзакциями
Транзакция - это последовательность операций над БД, рассматриваемых СУБД как единое целое. Либо транзакция успешно выполняется, и СУБД фиксирует (COMMIT) изменения БД, произведенные этой транзакци

Журнализация
Одним из основных требований к СУБД является надежность хранения данных во внешней памяти. Под надежностью хранения понимается то, что СУБД должна быть в состоянии восстановить посл

Поддержка языков БД
Для работы с базами данных используются специальные языки, в целом называемые языками баз данных. В ранних СУБД поддерживалось несколько специализированных по своим функциям языков. Чаще все

OLTP-системы
Сильно нормализованные модели данных хорошо подходят для так называемых OLTP-приложений (On-Line Transaction Processing - оперативная обработка транзакций). Типичными примерами

OLAP -системы
Другим типом приложений являются OLAP-приложения (On-Line Analitical Processing - оперативная аналитическая обработка данных). Это обобщенный термин, характеризующий принципы п

Мониторы транзакций
С ростом сложности распределенных вычислительных систем возникают проблемы эффективного использования их ресурсов. Для решения этих проблем в состав распределенных OLTP-систем вводят дополнительный

Ответ запрос
    Рисунок 6.1 Упрощенная схема работы монитора транзакций Клиентские приложения не знают, какой системе будут направлены их запросы, предлагается ли нужный се

Архитектура СУБД
Обычно современная СУБД содержит следующие компоненты (рис. 6.2):       Рис

Пользователи БД
Централизованный характер управления данными вызывает необходимость администрирования базы данных как сложной системы. Поэтому особую роль играет администратор базы или банка данных (АБД). А

Вопросы и упражнения для самоконтроля по главе 6
1. Для чего СУБД использует журналы? 2. Какова последовательность действий по восстановлению БД при жестком сбое? 3. Что содержится в системных таблицах БД? 4. Какие треб

Клиент Сервер
Рисунок 7.1 Модель файлового сервера Технология: выделяется файл-сервер для хранения и обработки файлов других узлов сети, а в остальных узлах функционирует приложение, в кодах кото

Клиент Сервер
Рисунок 7.2 Модель доступа к удаленным данным Технология: клиентский запрос направляется на сервер, где ядро СУБД обрабатывает запрос и возвращает результат (набор данных) клиенту.

Клиент Сервер
Рисунок 7.3 Модель сервера баз данных Технология: компонент представления выполняется на компьютере-клиенте, а прикладной компонент и ядро СУБД на компьютере-сервере БД. Процедуры х

Распределенная обработка данных
По мере роста БД, использование их в территориально разнесенных организациях приводит к тому, что централизованная СУБД плохо справляется с ростом числа обрабатываемых транзакций. Это приводит к сн

Аспекты сетевого взаимодействия
Традиционной и наиболее популярной является модель доступа к удаленным данным (RDA-модель). Рассмотрим ее более подробно. Имеется компьютер-клиент, на котором запускаются программы переднего плана

Технология распределенной БД (технология STAR)
Системы распределенных БД состоят из набора узлов, связанных вместе коммуникационной сетью, в которой: 1) каждый узел обладает собственной системой БД; 2) узлы работают согласован

Технология тиражирования данных
Принципиальная характеристика тиражирования (репликации) данных (Data Replication - DR) заключается в отказе от физического распределения данных. Суть DR состоит в том, что любая база данных (как д

Концепция активного сервера в модели DBS
Профессиональные СУБД обладают мощным активным сервером БД. Идея активного интеллектуального сервера БД стала ответом на следующие задачи реальной жизни: · БД должна отражать реальное сост

Вопросы и упражнения для самоконтроля к главе 7
1) Какие факторы влияют на реализацию технологии «клиент-сервер»? 2) Какой спектр операций манипулирования данными используется в модели файлового сервера? 3) Что означает пассивн

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги