рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Обработка прерываний

Обработка прерываний - Лекция, раздел Программирование, Основы алгоритмизации и программирования Система Прерываний Любого Компьютера Является Его Важнейшей Частью, Позволяющ...

Система прерываний любого компьютера является его важнейшей частью, позволяющей быстро реагировать на события, обработка которых должна выполнятся немедленно: сигналы от машинных таймеров, нажатия клавиш клавиатуры или мыши, сбои памяти и пр. Рассмотрим в общих чертах компоненты этой системы.

Сигналы аппаратных прерываний, возникающие в устройствах, входящих в состав компьютера или подключенных к нему, поступают в процессор не непосредственно, а через два контроллера прерываний, один из которых называется ведущим, а второй - ведомым (рис. 1.11)

Рис. 1.11.Аппаратная организация прерываний.

Два контроллера используются для увеличения допустимого количества внешних устройств. Дело в том, что каждый контроллер прерываний может обслуживать сигналы лишь от 8 устройств. Для обслуживания большего количества устройств контроллеры можно объединять, образуя из них веерообразную структуру. В современных машинах устанавливают два контроллера, увеличивая тем самым возможное число входных устройств до 15 (7 у ведущего и 8 у ведомого контроллеров).

На рис. 1.11 указаны некоторые из стандартных устройств компьютера, работающих в режиме прерываний.

Процессор, получив сигнал прерывания, выполняет последовательность стандартных действий, обычно называемых процедурой прерывания.

Объекты вычислительной системы, принимающие участие в процедуре прерывания, и их взаимодействие показаны на рис. 1.12.

Рис. 1.12. Процедура обслуживания прерывания.

Самое начало оперативной памяти от адреса 0000h до 03FFh отводится под векторы прерываний - четырехбайтовые области, в которых хранятся адреса обработчиков прерываний. В два старшие байта каждого вектора записывается сегментный адрес обработчика, в два младшие - смещение (относительный адрес) точки входа в обработчик. Векторы, как и соответствующие им прерывания, имеют номера, причем вектор с номером 0 располагается, начиная с адреса 0, вектор 1 - с адреса 4, вектор 2 - с адреса 8 и т.д. Вектор с номером п занимает, таким образом, байты памяти от n*4 до n*4+3. Всего в выделенной под векторы области памяти помещается 256 векторов.

Получив сигнал на выполнение процедуры прерывания с определенным номером, процессор сохраняет в стеке выполняемой программы текущее содержимое трех регистров процессора: регистра флагов, CS и IP. Два последних числа образуют полный адрес возврата в прерванную программу. Далее процессор загружает CS и IP из соответствующего вектора прерываний, осуществляя, тем самым, переход на обработчик прерывания, связанный с этим вектором.

Обработчик прерываний всегда заканчивается командой iret (interrupt return, возврат из прерывания), выполняющей обратные действия - извлечение из стека сохраненных там слов и помещение их назад в регистры IP и CS, а также в регистр флагов. Это приводит к возврату в основную программу в ту самую точку, где она была прервана.

Прерываниепо своему смыслу есть временное прекращение какого-то процесса.

Команды INT и CALL реализуют программные прерывания. Они выполняются, когда приходит время выполнить соответствующую команду. После их выполнения программа продолжает работать с команды, стоящей за командой вызова прерывания. Существуют и аппаратные прерывания, которые происходят, когда наступает некоторое событие, внешнее по отношению к программе. Это может быть сигнал по прошествию определенного промежутка времени, нажатие клавиши, переход принтера в состояние готовности, наступление некоторого события в микропроцессоре (деление на нуль, переполнение и т.п.) и т.д. Соответственно, аппаратные прерывания, происходящие от внешних устройств, будем называть внешними, а аппаратные прерывания, происходящие от события в микропроцессоре - внутренними. Есть еще немаскируемое прерывание – NMI. Это прерывание невозможно запретить командой CLI.

Рис. 9.1. Возможные схемы перехвата прерываний.

Вызвать старую процедуру прерывания можно двумя способами

а. Пусть старый

вектор прерывания хранится в двух смежных словах: OJTNT и S_INT:

O_INT - смещение, находится в младшем слове,

S_INT - сегмент, старшее слово; предполагается, что слова расположены в сегменте данных.

Первый способ:

JMP DWORD PTR DS:[0_INT]

передаст управление старой процедуре прерывания, причем возврата в Вашу процедуру не произойдет.

Второй способ:

PUSHF

CALL DWORD PTR DS:[O_INT]

передаст управление старой процедуре прерывания, после выполнения процедуры (или целой цепочки процедур) произойдет возврат в Вашу программу.

Перенаправить вектор можно также двумя способами:

1) используя функции DOS 25H и 35Н;

2) непосредственно обратившись к таблице векторов и изменив содержимое соответствующих ячеек.

 

– Конец работы –

Эта тема принадлежит разделу:

Основы алгоритмизации и программирования

Основы алгоритмизации и программирования... Литература В И Юров Ассемблер Учебник для вузов Н И Голубь Искусство программирования на Ассемблере Лекции и упражнения...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Обработка прерываний

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Организация памяти
Физическая память к которой процессор имеет доступ по шине адреса называется оперативной памятью. Реально ОЗУ организовано как последовательность ячеек, т.е. байтов. Диапазон значений физи

Основное применение организации виртуальной памяти
Сегментация – это механизм адресации, обеспечивающий существование нескольких независимых адресных пространств как в пределах одной задачи, так и в системе в целом для защиты задач от взаимного вли

Регистры общего назначения
Регистры общего назначения используются в программах для хранения: операндов

Сегментные регистры
Процессоры Intel аппаратно поддерживают сегментную организацию программы. Это означает, что любая программа состоит из трех сегментов: кода, данных и стека. Логически машинные команды в архитектуре

Регистры состояния и управления
В процессор включены два регистра, постоянно содержащие информацию о состоянии как самого процессора, так и программы, команды которой он в данный момент обрабатывает:

Формат команд
Машинная команда представляет собой закодированное по определенным правилам указание процессору на выполнение некоторой операции. Правила кодирования команд называются форматом команд

К теме о регистрах 2.3 Регистры состояния и управления
В процессор включены два регистра, постоянно содержащие информацию о состоянии как самого процессора, так и программы, команды которой он в данный момент обрабатывает:

Жизненный цикл программы
Процесс разработки программы на ассемблере, включая постановку задачи, получение первых результатов и дальнейшее сопровождение программы, мало чем отличается от традиционного подхода с использовани

Процесс разработки программы
На рис. 6.1 приведена общая схема процесса разработки программы на ассемблере. Название программы соответствует рассмотренному далее примеру программы. На схеме выделено четыре этапа этого процесса

Лекция 6.
1. Синтаксис Ассэмблера Программа на ассемблере представляет собой совокупность блоков памяти, называемых сегментами. Программа может состоять из одного или нескольких таких блоков-сегмент

Лекция 7.
1. Простые типы данных Ассемблера Любая программа предназначена для обработки некоторой информации, поэтому вопрос о том, какие типы данных языка программирования доступны для использовани

Лекция 8.
1.Структура машинной команды. Способы задания операндов. Машинная команда представляет собой закодированное по определенным правилам указание микропроцессору на выполнение некоторой операц

Префиксы.
Необязательные элементы машинной команды, каждый из которых состоит из 1 байта или может отсутствовать. В памяти префиксы предшествуют команде. Назначение префиксов – модифицировать операцию, выпол

Байт режима адресации modr/m.
Значения этого байта определяет используемую форму адреса операндов. Операнды могут находиться в памяти в одном или двух регистрах. Если операнд находится в памяти, то байт modr/m определяет компон

Поле смещения в команде.
8-, 16– или 32-разрядное целое число со знаком, представляющее собой, полностью или частично (с учетом вышеприведенных рассуждений), значение эффективного адреса операнда. 6. Поле

Прямая адресация
Это простейший вид адресации операнда в памяти, так как эффективный адрес содержится в самой команде и для его формирования не используется никаких дополнительных источников или регистров. Эффектив

Косвенная базовая (регистровая) адресация
При такой адресации эффективный адрес операнда может находиться только в базовом регистре bx/ebx.   Синтаксически в команде этот режим адресации выражается заключением имени

Лекция 9.
1.Функциональная классификация машинных команд Система команд Pentium 4, последнего на сегодняшний день процессора архитектуры IA-32, включает в себя около 330 мнемоник машинных команд. Ес

Команды общего назначения
Командами данной категории охватывается базовый набор операций по обработке данных. Классификация целочисленных машинных команд приведена на рис.9.1.

Команды сопроцессора
Возможны три формата команд сопроцессора, аналогичные форматам команд центральных процессоров фирмы Intel. Это команды с обращением к оперативной памяти, команды с обращением к одному из численных

MMX-расширения
Расширение MMX ориентировано в основном на использование в мультимедийных приложениях. Основная идея MMX заключается в одновременной обработке нескольких элементов данных за одну инструкцию. Расшир

XMM-расширения
В 1999 году семейство процессоров Pentium фирмы Intel пополнилось новой мо­делью — процессором Pentium III. Основу его архитектуры составляет ядро про­цессора Pentium II, дополненное модулем SSE (S

Лекция 10.
1.Пересылка данных Алгоритм, представляет собой формализованное описание логики работы программы. Способы такой формализации весьма разнятся: от текстового описания последовательности дейс

Работа со стеком
Стек — это область памяти, специально выделяемая для временного хранения данных программы. Важность стека определяется тем, что для него в структуре программы предусмотрен отдельный сегмент. На тот

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги