рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Независимые и взаимодействующие вычислительные процессы

Независимые и взаимодействующие вычислительные процессы - раздел Информатика, Программное обеспечение можно разделить на две группы: системное программное обеспечение СПО и прикладное программное обеспечение ППО Основной Особенностью Мультипрограммных Операционных Систем Является То, Что ...

Основной особенностью мультипрограммных операционных систем является то, что в их среде параллельно развивается несколько (последовательных) вычисли­тельных процессов. С точки зрения внешнего наблюдателя эти последовательные вычислительные процессы выполняются одновременно, мы будем использо­вать термин «параллельно». При этом под параллельными понимаются не только процессы, одновременно развивающиеся на различных процессорах, каналах и устройствах ввода/вывода, но и те последовательные процессы, которые разде­ляют центральный процессор и хотя бы частично перекрываются во времени. Любая мультипрограммная операционная система вместе с параллельно выпол­няющимися в ней задачами пользователей может быть логически описана как совокупность последовательных процессов, которые, с одной стороны, состяза­ются за использование ресурсов, переходя из одного состояния в другое, а с дру­гой — действуют почти независимо друг от друга, но образуют систему вследст­вие установления всевозможного рода связей между ними (путем пересылки сообщений и синхронизирующих сигналов).

Итак, параллельными мы будем называть такие последовательные вычислитель­ные процессы, которые одновременно находятся в каком-либо активном состоя­нии. Два параллельных процесса могут быть независимыми (independing proces­ses) либо взаимодействующими (cooperating processes).

Независимыми,являются процессы, множества переменных которых не пересека­ются. Под переменными в этом случае понимают файлы данных, а также области оперативной памяти, сопоставленные определенным в программе и промежуточ­ным переменным. Независимые процессы не влияют на результаты работы друг друга, так как не могут изменить значения переменных другого независимого процесса. Они могут только явиться причиной задержек исполнения других про­цессов, так как вынуждены разделять ресурсы системы.

Взаимодействующие процессы совместно используют некоторые (общие) пере­менные, и выполнение одного процесса может повлиять на выполнение другого.

Как мы уже говорили, при выполнении вычислительные процессы разделяют ре­сурсы системы. Подчеркнем, что при рассмотрении вопросов синхронизации вы­числительных процессов из числа разделяемых ими ресурсов исключаются: цен­тральный процессор и программы, реализующие эти процессы; то есть с логиче­ской точки зрения каждому процессу соответствуют свои процессор и программа, хотя в реальных системах обычно несколько процессов разделяют один процес­сор и одну или несколько программ. Многие ресурсы вычислительной системы могут совместно использоваться несколькими процессами, но в каждый момент времени к разделяемому ресурсу может иметь доступ только один процесс. Ре­сурсы, которые не допускают одновременного использования несколькими про­цессами, называются критическими.

Если нескольким вычислительным процессам необходимо пользоваться крити­ческим ресурсом в режиме разделения, им следует синхронизировать свои дей­ствия таким образом, чтобы ресурс всегда находился в распоряжении не более чем одного из процессов. Если один процесс пользуется в данный момент крити­ческим ресурсом, то все остальные процессы, которым нужен этот ресурс, долж­ны получить отказ и ждать, пока он не освободится. Если в операционной системе не предусмотрена защита от одновременного доступа процессов к критическим ресурсам, в ней могут возникать ошибки, которые трудно обнаружить и испра­вить. Основной причиной возникновения этих ошибок является то, что процес­сы в мультипрограммных операционных системах развиваются с различными скоростями, а относительные скорости развития каждого из взаимодействующих процессов не известны и не подвластны ни одному из них. Более того, на их ско­рости могут влиять решения планировщиков, касающиеся других процессов, с которыми ни одна из этих программ не взаимодействует. Кроме того, содер­жание одного процесса и скорость его исполнения обычно неизвестны другому процессу. Поэтому влияние, которое оказывают друг на друга взаимодействую­щие процессы, не всегда предсказуемо и воспроизводимо.

Взаимодействовать могут либо конкурирующие процессы, либо процессы, совме­стно выполняющие общую работу. Конкурирующие процессы, на первый взгляд, действуют относительно независимо, но они имеют доступ к общим переменным.

Процессы, выполняющие общую совместную работу таким образом, что резуль­таты вычислений одного процесса в явном виде передаются другому, то есть их работа построена именно на обмене данными, называются сотрудничающими. Взаимодействие сотрудничающих процессов удобно всего рассматривать в схеме «производитель — потребитель» (produces — consumer) или, как часто говорят — «поставщик — потребитель».

В качестве первого примера рассмотрим работу двух процессов Р1 и Р2 с общей переменной X. Пусть оба процесса асинхронно, независимо один от другого, из­меняют (например, увеличивают) значение переменной X, считывая ее значение в локальную область памяти Rj, при этом каждый процесс выполняет некоторые последовательности операций во времени (рис. 6.1). Здесь мы рассмотрим не все операторы каждого из процессов, а только те, в которых осуществляется работа с общей переменной X. Каждому из операторов мы присвоили некоторый услов­ный номер.

 

Процесс Р1   Процесс Р2
R1:=X R2:=X
R1:=R1+X R2:=R2+1
X:=R1 X:=R2

Рис. 6.1. Пример конкурирующих процессов

 

Поскольку при мультипрограммировании процессы могут иметь различные ско­рости исполнения, то может иметь место любая последовательность выполнения операций во времени. Если сначала будут выполнены все операции процесса Р1, а уже потом — все операции процесса Р2 (или, наоборот, сначала операции 4-6, а затем — операции 1-3), то в итоге переменная X получит значение, равное Х+2 .

Однако, если в промежуток времени между выполнением операций 1 и 3 будет выполнена хотя бы одна из операций 4-6, то значение переменной X после выполнения всех операций будет не (Х+2), а (Х+1).

Понятно, что это очень серьезная (и, к сожалению, неисправимая, так как ее нельзя проконтролировать) ошибка. Например, если бы процессы Р1 и Р2 осу­ществляли продажу билетов и переменная X фиксировала количество уже про­данных, то в результате некорректного взаимодействия было бы продано не­сколько билетов на одно и то же место.

В качестве второго примера приведем пару процессов, которые изме­няют различные поля записей служащих какого-либо предприятия. Пусть процесс АДРЕС изменяет домашний адрес служащего, а процесс СТАТУС — его должность и зарплату. Пусть каждый процесс копирует всю запись СЛУЖАЩИЙ в свою рабочую область. Предположим, что каждый процесс должен обработать некоторую запись ИВАНОВ. Предположим также, что после того, как процесс АДРЕС скопировал запись ИВАНОВ в свою рабочую область, но до того, как он записал скорректированную запись обратно, процесс СТАТУС скопировал пер­воначальную запись ИВАНОВ в свою рабочую область. Изменения, выполнен­ные тем из процессов, который первым запишет скорректированную запись назад в файл СЛУЖАЩИЕ, будут утеряны и, возможно, никто не будет знать об этом.

Чтобы предотвратить некорректное исполнение конкурирующих процессов вслед­ствие нерегламентированного доступа к разделяемым переменным, необходимо ввести механизм взаимного исключения, который не позволит двум процессам од­новременно обращаться к разделяемым переменным.

Кроме реализации в операционной системе средств, организующих взаимное ис­ключение и тем самым регулирующих доступ процессов к критическим ресур­сам, в ней должны быть предусмотрены средства, синхронизирующие работу взаимодействующих процессов. Другими словами, процессы должны обращать­ся к неким средствам не только ради синхронизации с целью взаимного исклю­чения, но и чтобы обмениваться данными.

Допустим, что «поставщик» — это процесс, который отправляет порции инфор­мации (сообщения) другому процессу, имя которого «потребитель». Например, процесс пользователя, порождающий строки для вывода, может выступать как «поставщик», а процесс, который выводит эти строки на печать, — как «потреби­тель». Один из методов, применяемых при реализации передачи сообщений, со­стоит в том, что заводится пул свободных буферов, каждый из которых может содержать одно сообщение (длина сообщения может быть произвольной, но ог­раниченной).

В этом случае между процессами «поставщик» и «потребитель» будем иметь очередь заполненных буферов, содержащих сообщения. Когда «поставщик» хо­чет послать очередное сообщение, он добавляет в конец этой очереди еще один буфер. «Потребитель», чтобы получить сообщение, забирает из очереди буфер, который стоит в ее начале. Такое решение, хотя и кажется тривиальным, требу­ет, чтобы «поставщик» и «потребитель» синхронизировали свои действия. На­пример, они должны следить за количеством свободных и заполненных буферов. «Поставщик» может передавать сообщения только до тех пор, пока имеются сво­бодные буферы. Аналогично, «потребитель» может получать сообщения только если очередь не пуста. Ясно, что для учета заполненных и свободных буферов нужны разделяемые переменные, поэтому для сотрудничающих процессов, как и для конкурирующих, тоже возникает необходимость во взаимном исключении.

Таким образом, до окончания обращения одной задачи к общим переменным следует исключить возможность обращения к ним другой задачи. Эта ситуация и называется взаимным исключением. Другими словами, при организации раз­личного рода взаимодействующих процессов приходится организовывать взаим­ное исключение и решать проблему корректного доступа к общим переменным (критическим ресурсам). Те места в программах, в которых происходит обращение к критическим ресурсам, называются критическими секциями или критиче­скими интервалами (Critical Section — CS). Решение этой проблемы заключает­ся в организации такого доступа к критическому ресурсу, когда только одному процессу разрешается входить в критическую секцию. Данная задача только на первый взгляд кажется простой, ибо критическая секция, вообще говоря, не яв­ляется последовательностью операторов программы, а является процессом, то есть последовательностью действий, которые выполняются этими операторами. Другими словами, несколько процессов, которые выполняются по одной и той же программе, могут выполнять критические интервалы, базирующиеся на од­ной и той же последовательности операторов программы.

Когда какой-либо процесс находится в своем критическом интервале, другие процессы могут, конечно, продолжать свое исполнение, но без входа в их крити­ческие секции. Взаимное исключение необходимо только в том случае, когда процессы обращаются к разделяемым, общим данным. Если же они выполняют операции, которые не приводят к конфликтным ситуациям, они должны иметь возможность работать параллельно. Когда процесс выходит из своего критиче­ского интервала, то одному из остальных процессов, ожидающих входа в свои критические секции, должно быть разрешено продолжить работу (если в этот момент действительно есть процесс в состоянии ожидания входа в свой критиче­ский интервал).

Обеспечение взаимоисключения является одной из ключевых проблем парал­лельного программирования. При этом можно перечислить следующие требова­ния к критическим секциям:

  • в любой момент времени только один процесс должен находиться в своей кри­тической секции;
  • ни один процесс не должен находиться в своей критической секции бесконеч­но долго;
  • ни один процесс не должен ждать бесконечно долго входа в свой критический интервал. В частности:
  1. никакой процесс, бесконечно долго находящийся вне своей критической секции (что допустимо), не должен задерживать выполнение других про­цессов, ожидающих входа в свои критические секции. Другими словами, процесс, работающий вне своей критической секции, не должен блокиро­вать критическую секцию другого процесса;
  2. если два процесса хотят войти в свои критические интервалы, то принятие решения о том, кто первым войдет в критическую секцию, не должно от­кладываться бесконечно долго;
  • если процесс, находящийся в своем критическом интервале, завершается либо естественным, либо аварийным путем, то режим взаимоисключения должен быть отменен, с тем чтобы другие процессы получили возможность входить в свои критические секции.

Было предложено несколько способов решения этой проблемы — программные и аппаратные; частные, низкоуровневые и глобальные, высокоуровневые; преду­сматривающие свободное взаимодействие между процессами и требующие стро­гого соблюдения жестких протоколов.

– Конец работы –

Эта тема принадлежит разделу:

Программное обеспечение можно разделить на две группы: системное программное обеспечение СПО и прикладное программное обеспечение ППО

Программное обеспечение это общий термин для обозначения quot неосязаемых quot в отличие от физических составных частей компьютерной системы... Программное обеспечение можно разделить на две группы системное программное... СПО управляет ресурсами компьютерной системы и позволяет пользователям программировать в более выразительных языках...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Независимые и взаимодействующие вычислительные процессы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Системное программное обеспечение
В англоязычной технической литературе термин System Software (системное про­граммное обеспечение) означает программы и комплексы программ, являющие­ся общими для всех, кто совместно использует техн

Понятие операционной среды
Операционная система выполняет функции управления вычислительными про­цессами в вычислительной системе, распределяет ресурсы вычислительной сис­темы между различными вычислительными процессами и об

Понятия вычислительного процесса и ресурса
Понятие «вычислительный процесс» (или просто — «процесс») является одним из основных при рассмотрении операционных систем. Последовательный процесс (иногда называемый «задачей») — это выполнение от

Диаграмма состояний процесса
Необходимо различать системные управляющие процессы, представляющие ра­боту супервизора операционной системы и занимающиеся распределением и управ­лением ресурсов, от всех других процессов: системн

Реализация понятия последовательного процесса в ОС
Контекст и дескриптор процесса На протяжении существования процесса его выполнение может быть многократно прервано и продолжено. Для того, чтобы возобновить выполнение процесса, необходимо

Процессы и треды
Понятие процесса было введено для реализации идей мультипрограммирования. Напомним, в свое время различали термины «мультизадачность» и «мультипро­граммирование». Таким образом, для реализации «мул

Прерывания
Прерывания представляют собой механизм, позволяющий координировать па­раллельное функционирование отдельных устройств вычислительной системы и реагировать на особые состояния, возникающие при работ

Основные виды ресурсов
Рассмотрим кратко основные виды ресурсов вычислительной системы и спосо­бы их разделения. Прежде всего, одним из важнейших ресурсов является сам процессор, точнее — процессорное время. Процессорное

Управление задачами в операционных системах
Итак, время центрального процессора и оперативная память являются основными ресурсами в случае реализации мультипрограммных вычислений. Оперативная память — это важнейший ресурс любой вычи

Стратегии планирования
Прежде всего следует отметить, что при рассмотрении стратегий планирования, как правило, идет речь о краткосрочном планировании, то есть о диспетчериза­ции. Долгосрочное планирование, как мы уже от

Дисциплины диспетчеризации
Когда говорят о диспетчеризации, то всегда в явном или неявном виде имеют в виду понятие задачи (потока). Если ОС не поддерживает механизм тредов, то можно заменять понятие задачи на понятие процес

Вытесняющие и не вытесняющие алгоритмы диспетчеризации
Диспетчеризация без перераспределения процессорного времени, то есть не вы­тесняющая многозадачность (non-preemptive multitasking) — это такой способ диспетчеризации процессов, при котором активный

Диспетчеризация задач с использованием динамических приоритетов
При выполнении программ, реализующих какие-либо задачи контроля и управ­ления (что характерно, прежде всего, для систем реального времени), может случиться такая ситуация, когда одна или несколько

Управление памятью.
Память является важнейшим ресурсом, требующим тщательного управления со стороны мультипрограммной операционной системы. Распределению подлежит вся оперативная память, не занятая операционной систем

Управление вводом/выводом
Необходимость обеспечить программам возможность осуществлять обмен дан­ными с внешними устройствами и при этом не включать в каждую двоичную программу соответствующий двоичный код, осуществляющий с

Режимы управления вводом/выводом
Как известно, имеются два основных режима ввода/вывода: режим обмена с опро­сом готовности устройства ввода/вывода и режим обмена с прерываниями. Рас­смотрим рис. 4.1.

Закрепление устройств, общие устройства ввода/вывода
Как известно, многие устройства не допускают совместного использования. Пре­жде всего, это устройства с последовательным доступом. Такие устройства могут стать закрепленными, то есть быть предостав

Основные системные таблицы ввода/вывода
Каждая ОС имеет свои таблицы ввода/вывода, их состав (количество и назначе­ние каждой таблицы) может сильно отличаться. В некоторых ОС вместо таблиц создаются списки, хотя использование статических

Синхронный и асинхронный ввод/вывод
Задача, выдавшая запрос на операцию ввода/вывода, переводится супервизором в состояние ожидания завершения заказанной операции. Когда супервизор по­лучает от секции завершения сообщение о том, что

Кэширование операций ввода/вывода при работе с накопителями на магнитных дисках
Как известно, накопители на магнитных дисках обладают крайне низкой скоро­стью по сравнению с быстродействием центральной части компьютера. Разница в быстродействии отличается на несколько порядков

Файловая система.
Файловая система - это часть операционной системы, назначение которой состоит в том, чтобы обеспечить пользователю удобный интерфейс при работе с данными, хранящимися на диске, и обеспечить совмест

Имена файлов
  Файлы идентифицируются именами. Пользователи дают файлам символьные имена, при этом учитываются ограничения ОС как на используемые символы, так и на длину имени. До недавнего времен

Типы файлов
  Файлы бывают разных типов: обычные файлы, специальные файлы, файлы-каталоги.   Обычные файлы в свою очередь подразделяются на текстовые и двоичные. Текстовые

Логическая организация файла
  Программист имеет дело с логической организацией файла, представляя файл в виде определенным образом организованных логических записей. Логическая запись - это наименьший элемент да

Физическая организация и адрес файла
  Физическая организация файла описывает правила расположения файла на устройстве внешней памяти, в частности на диске. Файл состоит из физических записей - блоков. Блок - наименьшая

Кэширование диска
  В некоторых файловых системах запросы к внешним устройствам, в которых адресация осуществляется блоками (диски, ленты), перехватываются промежуточным программным слоем-подсистемой б

Общая модель файловой системы
Функционирование любой файловой системы можно представить многоуровневой моделью, в которой каждый уровень предоставляет некоторый интерфейс (набор функций) вышележащему уровню, а сам, в с

Отображаемые в память файлы
  По сравнению с доступом к памяти, традиционный доступ к файлам выглядит запутанным и неудобным. По этой причине некоторые ОС, начиная с MULTICS, обеспечивают отображение файлов в ад

Современные архитектуры файловых систем
  Разработчики новых операционных систем стремятся обеспечить пользователя возможностью работать сразу с несколькими файловыми системами. В новом понимании файловая система состоит из

Принципы построения интерфейсов операционных систем
Напомним, что ОС всегда выступает как интерфейс между аппаратурой компью­тера и пользователем с его задачами. Под интерфейсами операционных систем здесь и далее следует понимать специальные интерфе

Интерфейс прикладного программирования
Прежде всего необходимо однозначно разделить общий термин API (application program interface, интерфейс прикладного программирования) на следующие направления: API как интерфейс высо

Реализация функций API на уровне ОС
При реализации функций API на уровне ОC за их выполнение ответственность несет ОС. Объектный код, выполняющий функции, либо непосредственно входит в состав ОС (или даже ядра ОС), либо поставляется

Реализация функций API на уровне системы программирования
Если функции API реализуются на уровне системы программирования, они пре­доставляются пользователю в виде библиотеки функций соответствующего язы­ка программирования. Обычно речь идет о библиотеке

Реализация функций API с помощью внешних библиотек
При реализации функций API с помощью внешних библиотек они предоставля­ются пользователю в виде библиотеки процедур и функций, созданной сторон­ним разработчиком. Причем разработчиком такой библиот

Платформенно-независимый интерфейс POSIX
POSIX (Portable Operating System Interface for Computer Environments) — платформенно независимый системный интерфейс для компьютерного окружения. Это стандарт IEEE, описывающий системные интерфейсы

Проектирование параллельных взаимодействующих вычислительных процессов
При создании современных приложений, позволяющих использовать все возмож­ности операционных систем в плане организации параллельных и распределен­ных вычислений, одной из важнейших проблем является

Средства синхронизации и связи при проектировании взаимодействующих вычислительных процессов
Все известные средства для решения проблемы взаимного исключения основа­ны на использовании специально введенных аппаратных возможностей, к кото­рым относятся блокировка памяти, специальные команды

Использование блокировки памяти при синхронизации параллельных процессов
Все вычислительные машины и системы имеют такое средство для организации взаимного ис­ключения, как блокировка памяти. Это средство запрещает одновременное ис­полнение двух (и более) команд, которы

Алгоритм Деккера
Алгоритм Деккера основан на использовании трех переменных (листинг 6.4): перекл1, перекл2 и ОЧЕРЕДЬ. Пусть по-прежнему переменная перекл1=true тогда, ког­да процесс ПР1 хочет войти в свой критическ

Семафорные примитивы Дейкстры
Понятие семафорных механизмов было введено Дейкстрой. Семафор — пе­ременная специального типа, которая доступна параллельным процессам для проведения над ней только двух операций: «закрытия» и «отк

Мьютексы
Одним из вариантов семафорных механизмов для организации взаимного ис­ключения являются так называемые мъютексы (mutex). Термин mutex произо­шел от английского словосочетания mutual exclusion semap

Использование семафоров при проектировании взаимодействующих вычислительных процессов
Семафорные примитивы чрезвычайно широко используются при проектирова­нии разнообразных вычислительных процессов. При этом некоторые задачи яв­ляются настолько «типичными», что их детальное рассмотр

Мониторы Хоара
Анализ рассмотренных задач показывает, что, несмотря на очевидные достоинст­ва (простота, независимость от количества процессов, отсутствие «активного ожидания»), семафорные механизмы имеют и ряд н

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги