рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Математическое ожидание.

Математическое ожидание. - раздел Математика, ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН Определение 7.1. Математическим ОжиданиемДискретной С...

Определение 7.1. Математическим ожиданиемдискретной случайной величины называ-ется сумма произведений ее возможных значений на соответствующие им вероятности:

М(Х) = х1р1 + х2р2 + … + хпрп . (7.1)

Если число возможных значений случайной величины бесконечно, то , если полученный ряд сходится абсолютно.

Замечание 1. Математическое ожидание называют иногда взвешенным средним, так как оно приближенно равно среднему арифметическому наблюдаемых значений случайной величины при большом числе опытов.

Замечание 2. Из определения математического ожидания следует, что его значение не меньше наименьшего возможного значения случайной величины и не больше наибольше-го.

Замечание 3. Математическое ожидание дискретной случайной величины есть неслучай-ная (постоянная) величина. В дальнейшем увидим, что это же справедливо и для непре-рывных случайных величин.

 

Пример 1. Найдем математическое ожидание случайной величины Х – числа стандартных деталей среди трех, отобранных из партии в 10 деталей, среди которых 2 бракованных. Составим ряд распределения для Х. Из условия задачи следует, что Х может принимать значения 1, 2, 3. Тогда

Пример 2. Определим математическое ожидание случайной величины Х – числа бросков монеты до первого появления герба. Эта величина может принимать бесконечное число значений (множество возможных значений есть множество натуральных чисел). Ряд ее распределения имеет вид:

Х п
р 0,5 (0,5)2 (0,5)п

 

Тогда ..+

+(при вычислении дважды использовалась формула суммы бесконечно убывающей геометрической прогрессии: , откуда ).

 

Свойства математического ожидания.

1) Математическое ожидание постоянной равно самой постоянной:

М(С) = С. (7.2)

Доказательство. Если рассматривать С как дискретную случайную величину, принимающую только одно значение С с вероятностью р = 1, то М(С) = С·1 = С.

2) Постоянный множитель можно выносит за знак математического ожидания:

М(СХ) = С М(Х). (7.3)

Доказательство. Если случайная величина Х задана рядом распределения

xi x1 x2 xn
pi p1 p2 pn

 

то ряд распределения для СХ имеет вид:

Сxi Сx1 Сx2 Сxn
pi p1 p2 pn

 

Тогда М(СХ) = Сх1р1 + Сх2р2 + … + Схпрп = С( х1р1 + х2р2 + … + хпрп) = СМ(Х).

 

Определение 7.2. Две случайные величины называются независимыми, если закон распределения одной из них не зависит от того, какие значения приняла другая. В противном случае случайные величины зависимы.

 

Определение 7.3. Назовем произведением независимых случайных величин Х и Y случайную величину XY, возможные значения которой равны произведениям всех возможных значений Х на все возможные значения Y, а соответствующие им вероят-ности равны произведениям вероятностей сомножителей.

 

3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

M(XY) = M(X)M(Y). (7.4)

Доказательство. Для упрощения вычислений ограничимся случаем, когда Х и Y принимают только по два возможных значения:

xi x1 x2
pi p1 p2

 

уi у1 у2
gi g1 g2

 

Тогда ряд распределения для XY выглядит так:

ХY x1y1 x2y1 x1y2 x2y2
p p1g1 p2 g1 p1g2 p2g2

 

Следовательно, M(XY) = x1y1·p1g1 + x2y1·p2g1 + x1y2·p1g2 + x2y2·p2g2 = y1g1(x1p1 + x2p2) + + y2g2(x1p1 + x2p2) = (y1g1 + y2g2) (x1p1 + x2p2) = M(XM(Y).

 

Замечание 1. Аналогично можно доказать это свойство для большего количества возможных значений сомножителей.

Замечание 2. Свойство 3 справедливо для произведения любого числа независимых случайных величин, что доказывается методом математической индукции.

Определение 7.4. Определим сумму случайных величин Х и Y как случайную величину Х + Y, возможные значения которой равны суммам каждого возможного значения Х с каждым возможным значением Y; вероятности таких сумм равны произведениям вероятностей слагаемых (для зависимых случайных величин – произведениям вероятности одного слагаемого на условную вероятность второго).

 

4) Математическое ожидание суммы двух случайных величин ( зависимых или незави-симых ) равно сумме математических ожиданий слагаемых:

M (X + Y) = M (X) + M (Y). (7.5)

Доказательство.

Вновь рассмотрим случайные величины, заданные рядами распределения, приведен-ными при доказательстве свойства 3. Тогда возможными значениями X + Y являются х1 + у1, х1 + у2, х2 + у1, х2 + у2. Обозначим их вероятности соответственно как р11, р12, р21 и р22. Найдем М( Х +Y ) = (x1 + y1)p11 + (x1 + y2)p12 + (x2 + y1)p21 + (x2 + y2)p22 =

= x1(p11 + p12) + x2(p21 + p22) + y1(p11 + p21) + y2(p12 + p22).

Докажем, что р11 + р22 = р1. Действительно, событие, состоящее в том, что X + Y примет значения х1 + у1 или х1 + у2 и вероятность которого равна р11 + р22, совпадает с событием, заключающемся в том, что Х = х1 (его вероятность – р1). Аналогично дока-зывается, что p21 + p22 = р2, p11 + p21 = g1, p12 + p22 = g2. Значит,

M(X + Y) = x1p1 + x2p2 + y1g1 + y2g2 = M (X) + M (Y).

Замечание. Из свойства 4 следует, что сумма любого числа случайных величин равна сумме математических ожиданий слагаемых.

 

Пример. Найти математическое ожидание суммы числа очков, выпавших при броске пяти игральных костей.

Найдем математическое ожидание числа очков, выпавших при броске одной кости:

М(Х1) = (1 + 2 + 3 + 4 + 5 + 6)Тому же числу равно математическое ожидание числа очков, выпавших на любой кости. Следовательно, по свойству 4 М(Х)=

 

Дисперсия.

 

Для того, чтобы иметь представление о поведении случайной величины, недостаточно знать только ее математическое ожидание. Рассмотрим две случайные величины: Х и Y, заданные рядами распределения вида

Х
р 0,1 0,8 0,1
Y
p 0,5 0,5

 

Найдем М(Х) = 49·0,1 + 50·0,8 + 51·0,1 = 50, М(Y) = 0·0,5 + 100·0,5 = 50. Как видно, мате-матические ожидания обеих величин равны, но если для Х М(Х) хорошо описывает пове-дение случайной величины, являясь ее наиболее вероятным возможным значением (при-чем остальные значения ненамного отличаются от 50), то значения Y существенно отсто-ят от М(Y). Следовательно, наряду с математическим ожиданием желательно знать, на-сколько значения случайной величины отклоняются от него. Для характеристики этого показателя служит дисперсия.

Определение 7.5. Дисперсией (рассеянием)случайной величины называется математи-ческое ожидание квадрата ее отклонения от ее математического ожидания:

D(X) = M (X – M(X))². (7.6)

Пример.

Найдем дисперсию случайной величины Х (числа стандартных деталей среди отобранных) в примере 1 данной лекции. Вычислим значения квадрата отклонения каждого возможно-го значения от математического ожидания:

(1 – 2,4)2 = 1,96; (2 – 2,4)2 = 0,16; (3 – 2,4)2 = 0,36. Следовательно,

 

Замечание 1. В определении дисперсии оценивается не само отклонение от среднего, а его квадрат. Это сделано для того, чтобы отклонения разных знаков не компенсировали друг друга.

Замечание 2. Из определения дисперсии следует, что эта величина принимает только неотрицательные значения.

Замечание 3. Существует более удобная для расчетов формула для вычисления дисперсии, справедливость которой доказывается в следующей теореме:

 

Теорема 7.1. D(X) = M(X ²) – M ²(X). (7.7)

Доказательство.

Используя то, что М(Х) – постоянная величина, и свойства математического ожидания, преобразуем формулу (7.6) к виду:

D(X) = M(X – M(X))² = M(X² - 2X·M(X) + M²(X)) = M(X²) – 2M(XM(X) + M²(X) =

= M(X²) – 2M²(X) + M²(X) = M(X²) – M²(X), что и требовалось доказать.

 

Пример. Вычислим дисперсии случайных величин Х и Y, рассмотренных в начале этого раздела. М(Х) = (492·0,1 + 502·0,8 + 512·0,1) – 502 = 2500,2 – 2500 = 0,2.

М(Y) = (02·0,5 + 100²·0,5) – 50² = 5000 – 2500 = 2500. Итак, дисперсия второй случайной величины в несколько тысяч раз больше дисперсии первой. Таким образом, даже не зная законов распределения этих величин, по известным значениям дисперсии мы можем утверждать, что Х мало отклоняется от своего математического ожидания, в то время как для Y это отклонение весьма существенно.

 

Свойства дисперсии.

 

1) Дисперсия постоянной величины С равна нулю:

D (C) = 0. (7.8)

Доказательство. D(C) = M((C – M(C))²) = M((C – C)²) = M(0) = 0.

2) Постоянный множитель можно выносить за знак дисперсии, возведя его в квадрат:

D(CX) = C²D(X). (7.9)

Доказательство. D(CX) = M((CX – M(CX))²) = M((CX – CM(X))²) = M(C²(X – M(X))²) =

= C²D(X).

3) Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий:

D(X + Y) = D(X) + D(Y). (7.10)

Доказательство. D(X + Y) = M(X² + 2XY + Y²) – (M(X) + M(Y))² = M(X²) + 2M(X)M(Y) +

+ M(Y²) – M²(X) – 2M(X)M(Y) – M²(Y) = (M(X²) – M²(X)) + (M(Y²) – M²(Y)) = D(X) + D(Y).

Следствие 1. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме их дисперсий.

Следствие 2. Дисперсия суммы постоянной и случайной величин равна дисперсии случайной величины.

4) Дисперсия разности двух независимых случайных величин равна сумме их дисперсий:

D(X – Y) = D(X) + D(Y). (7.11)

Доказательство. D(X – Y) = D(X) + D(-Y) = D(X) + (-1)²D(Y) = D(X) + D(X).

 

Дисперсия дает среднее значение квадрата отклонения случайной величины от среднего; для оценки самого отклонения служит величина, называемая средним квадратическим отклонением.

Определение 7.6. Средним квадратическим отклонением σ случайной величины Х называется квадратный корень из дисперсии:

. (7.12)

Пример. В предыдущем примере средние квадратические отклонения Х и Y равны соответственно

 

– Конец работы –

Эта тема принадлежит разделу:

ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН

На сайте allrefs.net читайте: "ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Математическое ожидание.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Числовые характеристики непрерывных случайных величин.
Распространим определения числовых характеристик случайных величин на непре-рывные случайные величины, для которых плотность распределения служит в некото-ром роде аналогом понятия вероятности.

Стандартные законы распределения.
1. Биномиальное распределение. Для дискретной случайной величины Х, представляющей собой число появлений события А в серии из п независимых испытаний (см. лекцию 6),

Двумерные случайные величины.
1. Дискретные двумерные случайные величины.   Закон распределения дискретной двумерной случайной величины (Х, Y) имеет вид таблицы с двойным вх

Дискретной двумерной случайной величины.
Рассмотрим дискретную двумерную случайную величину и найдем закон распределения составляющей Х при условии, что Y примет определенное значение (например, Y = у1). Дл

Равномерное распределение на плоскости.
Система двух случайных величин называется равномерно распределенной на плоскости, если ее плотность вероятности f(x, y) = const внутри некоторой области и равна 0 вне

Числовые характеристики двумерных случайных величин.
Такие характеристики, как начальные и центральные моменты, можно ввести и для системы двух случайных величин. Определение 9.8. Начальным моментом порядка k, s

Корреляционный момент и коэффициент корреляции.
Определение 9.10. Корреляционным моментомсистемы двух случайных величин называется второй смешанный центральный момент: Kxy = μ1,1

Математическое ожидание функции одного случайного аргумента.
Пусть Y = φ(X) – функция случайного аргумента Х, и требуется найти ее математическое ожидание, зная закон распределения Х. 1) Если Х – дискретная сл

Независимых слагаемых.
  Определение 10.2. Если каждой паре возможных значений случайных величин Х и Y соответ-ствует одно возможное значение случайной величины Z, то Z на

Нормальный закон распределения на плоскости. Линейная регрессия. Линейная корреляция.
Определение 11.1. Нормальным законом распределения на плоскости называют распре-деление вероятностей двумерной случайной величины (X, Y), если

Линейная регрессия.
Пусть составляющие Х и Y двумерной случайной величины (Х, Y) зависимы. Будем считать, что одну из них можно приближенно представить как линейную функцию другой, например

Линейная корреляция.
Для двумерной случайной величины (Х, Y) можно ввести так называемое условное математи-ческое ожидание Yпри Х = х. Для дискретной случайной величины оно определ

Распределение «хи-квадрат».
Пусть имеется несколько нормированных нормально распределенных случайных величин: Х1, Х2,…, Хп (ai = 0, σi

Распределение Стьюдента.
Рассмотрим две независимые случайные величины: Z, имеющую нормальное распределение и нормированную (то есть М( Z ) = 0, σ( Z) = 1), и V, распределенну

Распределение F Фишера – Снедекора.
Рассмотрим две независимые случайные величины U и V, распределенные по закону «хи-квадрат» со степенями свободы k1 и k2 и образуем из них новую вел

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги