рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Ферромагнетики и их применение

Ферромагнетики и их применение - раздел Физика, ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ   ...

 

Вещества, у которых магнитная проницаемость достигает сотен и даже миллионов единиц, выделены в особый класс – ферромагнетики. У ферромагнетиков есть ряд особенностей. Первая особенность – это характер намагничивания. У диа- и парамагнетиков вектор намагничивания, а, следовательно, и индукция магнитного поля пропорциональны напряженности внешнего поля. Для ферромагнетиков кривые намагничивания имеют вид (рисунок 33)

 

 

Рисунок 33

 

При некотором значении Н0 намагничивание М перестает изменяться, наступает насыщение. Кривая М(Н0) идет параллельно оси Н0. На графике зависимости В(Н0) кривая В(Н0) продолжает идти с наклоном к оси Н0 за счет коэффициента m0.

Магнитная проницаемость у ферромагнетиков не остается постоянной, а увеличивается с ростом Н по закону Столетова (рисунок 34).

В очень сильных полях m®1, и поэтому для получения сильных (Н=106 А/м) полей применять ферромагнитные сердечники бесполезно. При перемагничивании вещества наблюдается отставание в изменении магнитной индукции В от изменения напряженности Н0. Это явление получило название магнитного гистерезиса. При полном цикле перемагничивания кривая В = f(Н0) имеет вид петли, называемой петлей гистерезиса (рисунок35), где В0 – остаточное намагничивание, НК – коэрцитивная сила.

 


Рисунок 34 Рисунок 35

Петля гистерезиса в сильной мере зависит от материала и от его обработки. Площадь кривой пропорциональна работе перемагничивания.

В качестве сердечников в трансформаторах используют магнитомягкие материалы с узкой петлей, большим m и малой НК. Это железо (99,9%), пермалой (79,0%Ni, 6% Mo, 16% Fe). Для изготовления постоянных магнитов применяют магнитожесткие материалы: вольфрамовую сталь, альнико (Pb+Co), магнико. Чтобы избежать больших потерь на вихревые токи, в технике высокочастотных колебаний используют ферриты – химические соединения типа МеОFe2O3, где Ме – двухвалентный ион Mn2+, Co2+, Ni2+, Cu2+, Mg2+, Zn2+, Cd2+, Fe2+.

Другой особенностью ферромагнетиков является то, что их ферромагнитные свойства исчезают при некоторой температуре, называемой точкой КюриК). Например, для гадолиния ТК=17 0С, для никеля ТК=360 0С, а для кобальта ТК=1150 0С. При температурах более высоких, чем ТК ферромагнетик превращается в парамагнетик, причем магнитная восприимчивость зависит от температуры .

При перемагничивании многие ферромагнетики деформируются. Это явление носит название магнитострикции.

Магнитные свойства ферромагнетиков обусловлены спиновыми магнитными моментами. У атомов большинства элементов спиновые моменты попарно параллельны (скомпенсированы), поэтому результирующий спиновый момент равен нулю.

У таких материалов, как Cr, Mn, Fe, Co, Ni часть PS не скомпенсирована, что обуславливает большое значение (рисунок36).

 
 

 

 


Рисунок 36


Атомы ферромагнитных материалов сильно взаимодействуют, в результате в веществе возникают области спонтанного намагничивания – домены. Домены можно наблюдать визуально, если на поверхность образца насыпать железные опилки. Процесс намагничивания ферромагнетика происходит вначале за счет расширения границ тех доменов, у которых магнитные моменты направлены вдоль поля, а затем за счет ориентирования магнитных моментов в доменах. Магнитное насыщение наступает, когда все магнитные моменты будут строго параллельны направлению внешнего поля (рисунок 37).

 

Рисунок 37

В некоторых структурах энергетически выгодным является антипараллельное расположение спинов соседних узлов решетки. При абсолютном нуле магнитные моменты атомов компенсируют друг друга (рисунок 38).

       
   

 

 


Рисунок 38 Рисунок 39

При повышении температуры намагниченность материала повышается и достигает максимума при некоторой температуре (точка Нееля). Такие материалы называют антиферромагнетиками. Вещества с некомпенсированным антиферромагнетизмом называют ферритами. К ним относится большой класс веществ со структурой МеОFe2O3 (рисунок 39). Все они обладают спонтанной намагниченностью.

Замечательной особенностью ферритов является сочетание магнитных свойств с высоким электрическим сопротивлением. Именно поэтому ферриты произвели переворот в технике высоких и сверхвысоких частот, где металлические ферромагнетики не могут применяться из-за больших потерь на образование токов Фуко.

В настоящее время разработаны ферриты, обладающие большой коэрцитивной силой. Их используют для изготовления постоянных магнитов. Широкое применение получили ферриты, имеющие прямоугольную петлю гистерезиса. Их используют в качестве ячеек памяти в счетно-решающих машинах.

Очень широкое применение в науке и технике ферромагнетики получили благодаря своим особенностям. Высокие значения m приводят к тому, что ферромагнетики значительно сильнее взаимодействуют с внешним магнитным полем, чем парамагнетики. При этом собственное магнитное поле ферромагнетиков имеет такое же направление, как внешнее поле. Это приводит к тому, что ферромагнетик позволяет во много раз увеличивать индукцию внешнего магнитного поля. Поэтому для создания сильных магнитных полей в электромагнитах используют ферромагнитные сердечники. Кроме того, ферромагнетики сильно втягиваются в область более сильного магнитного поля и притягиваются к постоянным магнитам и электромагнитам. Это используют в самых различных устройствах – от электромагнитных подъемных кранов до приборов автоматического регулирования.

 

– Конец работы –

Эта тема принадлежит разделу:

ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ

Физические и химические свойства вещества от атома до живой клетки в значительной степени объясняются электрическими силами Электрические... Электростатическое... Пример Среда e Вакуум Воздух Керосин Вода...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Ферромагнетики и их применение

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общие положения электростатики. Закон Кулона
Электростатика изучает свойства и взаимодействие неподвижных зарядов. Фундаментальным свойством электрических зарядов является существование их в двух видах. Одни условно считаются

Электрическое поле. Напряженность
  Электрические заряды взаимодействуют через пространство, окружающее их. Это пространство обладает рядом физических свойств, представляет собой одну из форм материи и называется элек

Напряженность электростатического поля системы точечных зарядов равна векторной сумме напряженностей полей, созданных каждым зарядом в отдельности
. (6) Принцип суперпозиции применяется при расчете полей, созданных дискретными зарядами, например,

Теорема Гаусса
  Задать электрическое поле – это значит указать в каждой точке величину и направление вектора напряженности

Потенциал
Помимо разности потенциалов, характеризующие две точки поля, используют понятие потенциала, который является энергетической характеристикой каждой точки поля. Введём это понятие, исходя из выражени

Поле внутри и вне проводника
Особенности электрических свойств проводящих материалов определяются наличием в них свободных зарядов. В обычных условиях положительные и отрицательные заряды компенсируют друг друга. Если же в про

Поляризация диэлектриков
При внесении вещества в электрическое поле происходят изменения, как в веществе, так и в электрическом поле. Простые опыты показывают, что на поверхности диэлектрика, внесенного в электрическое пол

Поле в диэлектрике
  Поляризация диэлектрика приводит к возникновению в нем собственного электрического поля , ко

Особые диэлектрики
  Поляризованность большинства диэлектриков исчезает, когда исчезает ее причина, то есть внешнее электрическое поле. Однако существуют такие диэлектрики, в которых поляризованность со

Электроемкость
  Как мы видели, заряд, сообщенный проводнику, распределяется на его поверхности определенным образом. При этом, как показывает опыт, потенциал поверхности и величина заряда пропорцио

Емкость плоского конденсатора
Плоский конденсатор представляет собой две пластины (обкладки), между которыми помещен диэлектрик (рисунок31). Если не учитывать краевые эффекты, то электрическое поле между пластинами является одн

Емкость цилиндрического конденсатора
  Цилиндрический конденсатор представляет собой два коаксиальных цилиндра радиусами R1 и R2 и высотой

Емкость сферического конденсатора
  В сферическом конденсаторе с радиусами обкладок R1 и R2 (R1< R2) и диэлектрической проницаемостью диэлектрика e напряженность поля в л

Батареи конденсаторов
Для получения большей емкости конденсаторы соединяют в батарею параллельно (рисунок 34). При этом общий заряд батареи равен сумме зарядов конденсаторов, а напряжение одинаково на всех конденсаторах

Энергия электрического поля
  При перемещении зарядов в электростатическом поле совершается работа за счет убыли потенциальной энергии поля. Для того, чтобы выяснить, от каких величин зависит энергия электростат

Общие положения
Одним из основных понятий электродинамики является электрический ток. Электрическим током называют упорядоченное движение электрических зарядов в пространстве. Упорядоченное движение свобо

Законы Ома и Джоуля-Ленца в дифференциальной форме
Выведем закон Ома для металлов, исходя из модели электронного газа. Рассчитаем плотность тока

Законы Ома и Джоуля-Ленца в интегральной форме
Законы Ома и Джоуля-Ленца в дифференциальной форме устанавливают соотношения в локальных точках проводника.

Электрический ток в диэлектрике
В диэлектриках свободные заряды отсутствуют по определению. Идеальным диэлектриком является вакуум, в котором ток может существовать только при поступлении зарядов извне

Сторонние силы

Неоднородные цепи
Электрическая цепь, в которой непрерывное протекание тока обеспечивается за счет сторонних сил, называется н

МАГНИТНОЕ ПОЛЕ В ВАКУУМЕ
  Вблизи неподвижных зарядов возникает электростатическое поле. Движение зарядов (протекание электрического тока) приводит к появлению новой формы материи – магнитного поля. Это особа

Циркуляция вектора магнитной индукции
  По аналогии с электростатикой определяется понятие циркуляции вектора по замкнутому контуру

Контур с током в однородном магнитном поле
Применим закон Ампера к прямоугольному контуру с током в однородном магнитном поле. На ребра “a” действует сила

Контур с током в неоднородном магнитном поле
  Если контур с током находится в неоднородном магнитном поле, то на разные его участки действуют неодинаковые силы

Контур с током в радиальном магнитном поле
  Из формул (37) и (38) следует, что в однородном магнитном поле вращающий момент, действующий на контур с током максимален, если

Электродвигатели
  Из рисунка 23 следует, что при выбранной ориентации полюсов магнита и направления тока а контуре вращающий момент направлен «на нас», то есть стремится повернуть контур против часов

Работа магнитного поля
Если действующая на проводник с током со стороны магнитного поля сила ампера вызывает его перемещение, то о

Намагниченность веществ
Различные вещества в магнитном поле намагничиваются, то есть приобретают магнитный момент и сами становятся источниками магнитных полей. Результирующее магнитное поле в среде является суммой полей,

Диа-, пара- и ферромагнетики и их применение.
  Магнитный момент атома включает несколько составляющих , где

Диамагнетики
  У некоторых атомов (Cu, Au, Zn и др.) электронные оболочки имеют такое строение, что орбитальный и спиновый моменты взаимно скомпенсированы, и в целом магнитный момент атома равен н

Парамагнетики
  У атомов таких веществ, как Al, Mn, Os и др. нескомпенсирован суммарный орбитальный момент, то есть в отсутствие внешнего поля у них имеются собственные магнитные моменты. Тепловое

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ
  В основе современного способа производства электроэнергии лежит физическое явление электромагнитной индукции, открытое Фарадеем в 1831 г. Современная энергетика все больше

Явление электромагнитной индукции
Рассмотрим сущность электромагнитной индукции и принципы, которые приводят к этому явлению. Предположим, что проводник 1-2 перемещается в магнитном поле со скоростью

Электрогенератор
  Закон Фарадея относится к фундаментальным законам природы, и является следствием закона сохранения энергии. Он широко применяется в технике, в частности, в генераторах. Основная час

Самоиндукция
Явление электромагнитной индукции наблюдается во всех случаях, когда изменяется магнитный поток, пронизывающий контур. В частности, магнитный поток создается и током, текущим в самом контуре. Поэто

Переходные процессы в цепях с индуктивностью
  Рассмотрим цепь, содержащую индуктивность и активное сопротивление (рисунок 44). В исходном состоянии ключ S находился в нейтральном положении. Пусть в момент времени t

Взаимная индукция. Трансформатор
Явление взаимной индукции – это частный случай явления электромагнитной индукции. Поместим два кон

УРАВНЕНИЯ МАКСВЕЛЛА
  К середине XIX века было накоплено большое количество экспериментальных фактов по электричеству и магнетизму. Неоценимый вклад в это внес М. Фарадей, венцом творческих успехов котор

Энергия магнитного поля
Рассчитаем энергию магнитного поля. Для этого вычислим работу источника тока в цепи с индуктивностью. При установлении тока в такой цепи по закону Ома имеем iR = ε

Вихревое электрическое поле
  В соответствии с законом Фарадея для электромагнитной индукции в контуре, который движется в магнитном поле, возникает ЭДС, пропорциональная скорости изменения магнитного потока в э

Ток смещения
  В соответствии с прямой гипотезой Дж. Максвелла изменяющееся магнитное поле порождает переменное электрическое поле. Обратная гипотеза Максвелла утверждает, что переменное электриче

Уравнения Максвелла
В 1860-65 гг. Максвелл развил теорию единого электромагнитного поля, которое описывается системой уравнений Максвелла

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги