рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Способы выражения концентрации растворов

Способы выражения концентрации растворов - раздел Химия, Денисова С.А Химический анализ В Технологии Выполнения Химических Анализов Необходимым Этапом Является Приго...

В технологии выполнения химических анализов необходимым этапом является приготовление растворов химических веществ. В химическом анализе используются различные растворенные вещества (реагенты, буферные смеси, фиксирующие агенты, консерванты и т.п.) и растворители (вода, этанол и водно-спиртовые смеси, органические экстрагенты). В учебных пособиях, руководствах для химиков-аналитиков, нормативных документах (ГОСТах, РД, МУ) и справочной литературе можно встретить различные способы выражения концентраций химических веществ. В настоящее время в международной системе единиц (СИ) они приводятся в соответствии с ГОСТ 8.417-81. Ниже мы остановимся на некоторых из них, наиболее часто используемых в аналитической химии, но сначала приведем краткую информацию по основополагающим единицам измерений, применяющихся при описании различных способов выражения концентраций химических веществ в растворах.

Масса вещества обозначается как m(А) (где А – химический символ вещества) и обычно измеряется в граммах или миллиграммах.

Моль. За единицу количества вещества n(А) принят моль. Это такое количество вещества, которое содержит столько условных частиц, сколько атомов содержится в 0,012 кг углерода-12, т. е. 6,02045∙1023. Условной частицей может быть молекула, ион, электрон, группы частиц. Например, 1 молекула HCl (1 моль молекул HCl); 0,1 иона Fe3+ (0,1 моль ионов Fe(III)); 1/6 часть иона Cr2O72- (1 моль 1/6 дихромат-иона). Записывают количество вещества следующим образом: n (HCl) = 1 моль; n (Fe3+) = 0,1 моль; n (1/6 Cr2O72-) = 1 моль.

Молярная масса. Масса одного моля вещества называется молярной массой вещества. Ее обозначат буквой М и измеряют в г∙моль-1. Например, М(Cu) = 63,54 г∙моль-1, М(Н2SO4) = 98,08 г∙моль-1.

Эквивалент. Фактор эквивалентности. Во многих химических реакциях принимает участие не целая частица вещества, а лишь ее часть – эквивалент. Вещества реагируют между собой эквивалентами — этот закон кратных отношений Дальтона в аналитической химии служит основой всех количественных расчетов, особенно в титриметрических методах анализа.

Эквивалентом называется некая реальная или условная частица, которая может присоединять, высвобождать или быть каким-нибудь другим образом эквивалентна одному иону водорода в кислотно-основных реакциях или одному электрону в окислительно-восстановительных реакциях. Эквивалент – это безразмерная величина.

Однако на практике, при установлении стехиометрических соотношений в реакциях, удобнее пользоваться понятием фактор эквивалентности (fэкв). Фактор эквивалентности – число, обозначающее, какая доля реальной частицы вещества Х эквивалентна одному иону водорода в данной кислотно-основной реакции или одному электрону в данной окислительно-восстановительной реакции. Фактор эквивалентности – безразмерная величина, причем f'экв ≤ 1 . Рассчитывают фактор эквивалентности на основании стехиометрии данной реакции, которая обязательно должна быть указана. Молекулы многопротонных кислот могут участвовать в реакциях различно, например, в реакции

H3PO4 + NaOH = NaH2PO4 + H2O (1)

каждый моль ортофосфорной кислоты отдает 1 моль ионов Н+ и фактор эквивалентности fэкв(H3PO4) = 1. А в реакции:

H3PO4 + 2NaOH = Na2HPO4 + 2H2O (2)

каждый моль ортофосфорной соответствует уже двум молям ионов водорода, фактор эквивалентности fэкв(H3PO4) = 1/2.

Наконец, моль этой же кислоты может участвовать в реакции с тремя молями NaOH:

H3PO4 + 3NaOH = Na3PO4 + 3H2О (3).

В этой реакции моль ортофосфорной кислоты соответствует трем молям ионов Н+ и фактор эквивалентности fэкв(H3PO4) = 1/3.

Рассмотрим реакцию нейтрализации ортофосфорной кислоты гидроксидом кальция:

2H3PO4 + 3Ca(OH)2 = Ca3(PO4)2 + 6H2O.

В этом случае на 2 моля ортофосфорной кислоты приходится 6 моль ионов водорода, т. е. 1 моль H3PO4 соответствует 3 молям Н+, значит fэкв (H3PO4) = 1/3.

Аналогично вычисляют фактор эквивалентности оснований. В этой реакции на 3 моля Ca(OH)2 расходуется 6 Н+, а на 1 моль гидроксида кальция будет приходиться 2 моля ионов водорода, т.е. fэкв(Ca(OH)2) = 1/2.

Как видно из приведенных примеров, для кислотно-основных реакций эквивалент и фактор эквивалентности вещества находят непосредственно из уравнения путем установления эквивалентности соотношений реагирующих веществ относительно иона водорода или гидроксильной группы.

В окислительно-восстановительных реакциях эквивалент – условная частица, которая в данной реакции присоединяет или отдает один электрон. Здесь также пользуются уравнениями реакций, но с учетом количества отданных или принятых электронов.

Пример 2. Найти фактор эквивалентности перманганата калия в окислительно-восстановительных реакциях:

 

1) 2KMnO4 + 10FeSO4 + 8H2SO4 = 2MnSO4 + 5Fe2(SO4)3 + K2SO4 + 4H2O (4)

Из приведенного уравнения видно, что в кислой среде каждая молекула KMnO4 принимает 5 электронов. Следовательно, fэкв(KMnO4) = 1/5.

Таким образом, для нахождения фактора эквивалентности окислителя нужно 1 разделить на число электронов, принимаемых 1 молекулой вещества в реакции.

Подобно этому фактор эквивалентности восстановителей находят делением 1 на число электронов, теряемых 1 молекулой вещества в реакции, т.к. 2 молекулы FeSO4 в этой реакции отдают 2 электрона, то на одну молекулу сульфата железа (II) приходится 1 электрон и fэкв(FeSO4) = 1.

При взаимодействии перманганата калия с HCl в щелочной среде происходит реакция:

 

2) 2KMnO4 + 10HCl + 2KOH = 2MnO2 + 4KCl + 3Cl2 + 6H2O (5)

Здесь взаимодействие компонентов происходит при участии трех электронов, принимаемых молекулой перманганата, следовательно, фактор эквивалентности fэкв(KMnO4) = 1/3.

Молярная масса эквивалента вещества(А) может быть выражена произведением фактора эквивалентности вещества А на его молярную массу:

МЭ(А) = fэкв.(А)·М(А), г·моль-1.

Например, для ортофосфорной кислоты в реакции (2)

МЭ(H3PO4) = fэкв(H3PO4)∙ М(H3PO4) = 1/2∙98 = 46 г∙моль-1,

а для перманганата калия в полуреакции (4)

MЭ(KMnO4) = fэкв(KMnO4)∙М(KMnO4) =1/5∙158 = 31,6 г∙моль-1.

Понятие «молярная масса эквивалента» равноценно прежнему «грамм-эквивалент», в современной литературе не используемому.

В аналитической химии часто имеют дело с количеством вещества в определенном объеме, т. е. с концентрацией. Особенно это важно для веществ в растворах. Единицей объема служит кубический метр (м3) или кубический дециметр (дм3), который в точности равен 1 литру (л).

Массовая концентрация отношение массы растворенного вещества ms к объему раствора V. Для выражения массовой концентрации вещества кроме стандартизованных единиц (кг/дм3 или кг/л), часто используют также кратные дольные единицы. Например, массовуюконцентрацию, выраженную в граммах вещества в миллилитре раствора (г/мл), называют титром по исходному веществу или просто титром. Эта единица дала название классическому методу анализа — титриметрия. При проведении однотипных титриметрических определений удобен титр по определяемому веществу — масса определяемого вещества, с которой реагирует 1 мл стандартного раствора. Например, означает, что 1 мл раствора НСl реагирует с 0,0080 г СаСО3.

Доля компонента. Часто состав раствора или других объектов выражают в доле компонента от общего количества вещества. Удобство такого способа выражения состава заключается в независимости от агрегатного состояния объекта. «Доля» означает отношение числа частей компонента к общему числу частей объекта. В зависимости от выбранной единицы различают молярную (α), массовую (ω) и объемную (φ) доли:

 

Массовую долю, выраженную в процентах, называют процентной концентрацией.

Пример. Содержание аскорбиновой кислоты в настое шиповника составляет 5,5 мг в 1 л. Выразите содержание аскорбиновой кислоты в массовой доле.

Найдем массовую долю аскорбиновой кислоты в растворе (учитывая, что 1 л имеет массу 103 г, а 5,5 мг = 5,5∙10-3 г):

.

Молярная концентрация (c) – отношение числа молей растворенного вещества (А) к объему раствора. Она показывает, сколько молей вещества содержится в 1 л раствора.

, (6)

где n(А) – число молей вещества А.

Таким образом, молярную концентрацию выражают в моль/дм3 или моль/л (моль растворенного вещества в литре раствора), и часто обозначают как М. Например, с(НС1) = 0,1 моль/л или с(НС1) = 0,1 М; с(1/5 КMnО4) = 0,05 моль/л или с(1/5 КMnО4) = 0,05 М.

Молярный раствор – это раствор, содержащий 1 моль растворенного вещества в 1 л раствора. Растворы с содержанием 0,1, 0,01 и 0,001 М растворенного вещества называются соответственно деци-, санти- и миллимолярными.

Пример. Сколько г NaCl необходимо взять для приготовления 50 мл 0,1 М раствора?

Молярная масса NaCl составляет М(NaCl) = 58,45 г∙моль-1. Пользуясь формулой (6) рассчитаем массу NaCl, необходимую для приготовления 50 мл 0,1 М раствора, объем при этом должен быть выражен в л:

m(NaCl) = V∙M(NaCl)∙c(NaCl) = 50∙10-3 ∙ 58,45 ∙ 0,1 = 0,2923 г

Навеску в 0,2923 г следует поместить в мерную колбу на 50 мл и долить дистиллированную воду до метки. Содержимое колбы перемешивать до полного растворения соли.

Молярная концентрация эквивалента вещества А(cэ(А)) ранее называемая "нормальной" ("н"), выражается количеством моль-эквивалентов, содержащихся в 1 л раствора (моль∙экв/л) и находится по формуле:

 

, (7)

где nэкв(А) – число молей эквивалента вещества А: (fэкв(А)А).

Как следует из выражений (6) и (7) исходное понятие моля вещества n(А) как его количества, выраженного в "условных частицах" (с.74), приводит фактически к равнозначности понятий "моль вещества" и "моль эквивалента вещества". При определении соответствующих концентраций (c(А) и cэ(А) основное значение имеет молярная масса "условной частицы", для нахождения которой используют фактор эквивалентности (fэкв).

Подставляя значение MЭ(А)=fэкв.(А)·М(А) в выражение (7), получим взаимосвязь между молярной концентрацией и молярной концентрацией эквивалента:

(8)

Как видно из приведенной формулы, при использовании этой концентрации необходимо указывать фактор эквивалентности, иначе возникает неоднозначность. Например, 0,1 моль∙экв/л может означать, что в 1 л содержится 49 г ортофосфорной кислоты (при fэкв = 1/2; см. реакцию (2)) или 98 г (при fэкв = 1; реакция (1)).

Таким образом, в привлечении молярной концентрации эквивалента нет особой необходимости, достаточно молярной концентрации. Например, 0,1 моль∙экв/л H3PO4 (fэкв = 1/2) то же, что 0,1 М (1/2 H3PO4); 0,05 н KMnO4 (fэкв = 1/5) то же, что 0,05 М (1/5 KMnO4). Однако термин "молярная концентрация эквивалента" традиционно употребляют для обозначения эквивалентности взаимодействия реагирующих веществ. При этом имеют ввиду просто молярную концентрацию того или иного количества условных частиц. Необходимо отметить, что понятие о молярной концентрации как о количестве молей эквивалентов вещества введено ИЮПАК уже в 1969 г.

 

– Конец работы –

Эта тема принадлежит разделу:

Денисова С.А Химический анализ

Д... УДК... Денисова С А ISBN...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Способы выражения концентрации растворов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Денисова С.А.
Д33 Химия (аналитическая): учеб.-метод. пособие для студентов геолог. ф-та / С.А. Денисова, Л.И. Торопов; Перм. ун-т. – Пермь, 2011. – 122 с.     ISBN 5-7944

Краткий очерк о развитии аналитической химии
  Аналитическая химия прошла большой исторический путь. Можно выделить следующие периоды: наука древних; алхимия (IV-XVI вв.), ятрохимия (XVI-XVII вв.), эпоха флогистона (XVII-XVIII в

Химическое равновесие в гомогенной системе. Закон действия масс.
  Закон действия масс открыли в 1884 г. норвежские ученые К. Гульдберг и П. Вааге. Этот фундаментальный закон химии является теоретической основой многих методов анализа. Он устанавли

Протолитическая теория кислот и оснований
  В 1923 г. Бренстед и Лоури предложили теорию кислот и оснований, получившую название протолитической. Теория основана на особенностях иона водорода. Протон лишен электронной

Степень электролитической диссоциации
  Большинство реакций, используемых в аналитической химии, проводится в растворах. Из курса общей химии известно, что многие химические вещества (соли, основания, кислоты) при раствор

Константа диссоциации слабого электролита
  Процесс диссоциации молекул электролита является обратимым. В растворе устанавливается равновесие между ионами и недиссоциированными молекулами, поэтому можно использовать закон дей

Коэффициент активности и ионная сила
  Для сильных электролитов констант диссоциации не существует, т.к. в растворах они обычно диссоциированы полностью. По этой причине число ионов в них больше, чем в растворах слабых э

Под активностью иона понимают ту эффективную, условную концентрацию его, соответственно которой он действует при химических реакциях.
Между активностью иона a и его действительной концентрацией ссуществует линейная зависимость: а = f ∙ с, где f

Диссоциация воды. Водородный и гидроксильный показатели.
  Реакции, применяемые в аналитической химии, протекают чаще всего в водных растворах. Вода является слабым электролитом, способным проводить электрический ток. Процесс диссоциации во

Действие одноименных ионов. Буферные растворы.
Степень электролитической диссоциации вещества зависит не только от его концентрации в растворе, но и от присутствия в растворе других электролитов. Степень диссоциации слабого электролита понижает

Гидролиз солей
  Растворение вещества в воде часто сопровождается химическим взаимодействием. Взаимодействие вещества с водой, протекающее с образованием малодиссоциированного соединения,

Произведение растворимости. Произведение активностей ионов
  Химические взаимодействия, происходящие в растворах, могут сопровождаться образованием осадков, например: AgNO3 + HCl D AgCl↓ + HNO3 На

Вопросы для самопроверки
  1. В чем заключаются практические задачи аналитической химии? Какова роль аналитической химии в науке и производстве? 2. Назовите наиболее распространенные классификации ме

Особенности аналитических реакций и способы их выполнения
Задача качественного неорганического анализа обычно сводится к обнаружению катионов и анионов, присутствующих в анализируемой пробе. При обнаружении какого-либо компонента обычно фиксируют появлени

Лабораторное оборудование и техника выполнения качественного анализа
При выполнении в практикуме работ по качественному анализу студент использует следующую посуду и оборудование. 1) Пробирки цилиндрические – для выполнения реакций с

Техника выполнения реакций
Реакции, выполняемые в пробирке. Исследуемый раствор (2-3 капли) вносят в пробирку капиллярной пипеткой так, чтобы кончик пипетки не коснулся стенок пробирки. Соблюдая условия пров

Методика выполнения основных операций в полумикроанализе
  Нагреваниеи выпаривание.При проведении многих реакций требуется нагревание. Нагревать растворы в пробирках на открытом пламени горелки нельзя. Поэт

Реакции обнаружения катионов
Аналитическая классификация катионов связана с их разделением на аналитические группы при последовательном действии групповыми реагентами. В настоящем пособии рассматривается кислотно-щелочная схем

Первая группа катионов
К I аналитической группе относятся катионы Ag+, Hg22+, Рb2+., соли которых почти все плохо растворимы в воде. Хорошо растворимы лишь нитраты, а также аце

Реакция с хлороводородной кислотой и ее солями.
Хлорид–ионы осаждают из водных растворов солей серебра белый осадок хлорида серебра, нерастворимый в азотной и серной кислотах: AgNO3 + НCl = AgCl↓ + NaNO3

Реакция с гидроксидами щелочных металлов и аммиаком.
КОН и NaOH выделяют из растворов солей серебра не гидроксид AgOH, который неустойчив, а бурый осадок оксида серебра Ag2O, растворяющийся в NH4OH с образованием аммиачного комп

Реакция с KI.
Иодид калия образует желто-зеленый осадок AgI, нерастворимый в аммиаке, кислотах, но способный растворяться в избытке реагента и тиосульфате натрия Na2S2O3, так как

Вторая группа катионов
Ко II аналитической группе относятся катионы Ca2+, Ba2+, Sr2+. Основные свойства этих металлов выражены сильно, поэтому соли, образованные сильными кислотами, в вод

Реакции ионов кальция
1. Оксалат аммония образует с ионами кальция белый кристаллический осадок СаС2О4∙Н2О: CaCl2 + (NH4)

Реакции с серной кислотой и ее солями.
При взаимодействии разбавленной серной кислоты или ее растворимых солей с солями бария выпадает белый кристаллический осадок сульфата бария. BaCl2 + H2SO4

Третья группа катионов
К III аналитической группе относятся катионы Аl3+, Zn2+, Cr3+ , Sn(II), Sn(IV), As(III), As(V). Характерной особенностью катионов III группы является способность их

Реакции ионов хрома (III)
1. Гидроксиды щелочных металлов осаждают Cr(OH)3 серо-зеленого цвета, растворимый в избытке реактива вследствие своих амфотерных свойств. CrCl3 + 3Na

Окисление хрома(III) в кислой среде.
Окисление Cr3+ перманганатом калия в кислой среде протекает по уравнению: Cr2(SO4)3 + 2KMnO4 + 5Н2О = К

Четвертая группа катионов
К четвертой аналитической группе относятся катионы Mg2+, Mn2+, Fe2+, Fe3+. Гидроксиды катионов IV группы нерастворимы в избытке щелочей и растворе аммиак

Реакции ионов магния
  1. Гидрофосфат натрияобразует с ионами магния в присутствии NH3 при рН 9 белый кристаллический осадок MgNH4PO4∙6Н2

Капельная реакция Тананаева.
Выполнение определения. На полоску фильтровальной бумаги наносят каплю исследуемого раствора, 1 каплю фенолфталеина, 1 каплю раствора аммиака. Бумага окрасится в малиновый цвет. Бумаг

Реакции ионов железа(II)
  1. Гексацианоферрат (III) калия (красная кровяная соль) образует с ионами железа (II) синий осадок, называемый "турнбулевой синью": 3FeCl2

Реакции ионов железа(III)
1. Гексацианоферрат (II) калия (желтая кровяная соль) образует с ионами железа (III) темно-синий осадок "берлинской лазури": 4FeCl3 + 3K4[F

Пятая группа катионов
К пятой аналитической группе относятся катионы: Cu2+, Cd2+, Co2+, Ni2+, Hg2+. Их гидроксиды растворимы в избытке раствора аммиака с образовани

Реакции ионов меди
1. Реакция с NH3∙H2O.Раствор аммиака при медленном добавлении к раствору соли меди(II) сначала осаждает основную соль меди зеленовато-голубоватого цвета

Шестая группа катионов
К VI аналитической группе катионов относятся NH4+, Na+ и K+. Соли, образованные катионами натрия и калия и анионами сильных минеральных кислот, хорошо ра

Реакции ионов калия
1. Гексанитрокобальтат (III) натрияв слабокислой среде (pH 4–6) выделяет из растворов солей калия кристаллический желтый осадок: 2КCl + Na3[Co(NO2)

Реакции ионов натрия
1.Реакция с дигидростильбатом калия KH2SbO4: NaСl + KН2SbО4- = NaH2SbO4↓

Реакции ионов аммония
1. Гидроксид калия (натрия).Реакция со щелочами – одна из немногих специфических реакций в аналитической химии, позволяющая "открыть" катион аммония непосредственно из ан

Особенности анализа катионов VI группы
При проведении анализа необходимо учитывать следующие обстоятельства: а) присутствие катиона аммония мешает обнаружению калия и натрия при использовании KH2S

Реакции карбонат-ионов
Карбонат-ион является анионом слабой двухосновной угольной кислоты H2CО3 (К1 = 3,5∙10–7, К2 = 5,73∙10–11)

Реакции сульфат-ионов
Большинство сульфатов и гидросульфатов хорошо растворимо в воде, причем гидросульфаты растворимы лучше сульфатов. Малорастворимы сульфаты свинца, бария, стронция, кальция, серебра и ртути (I).

Реакции фосфат-ионов
  Фосфат-ион является анионом ортофосфорной кислоты H3РO4, которая относится к кислотам средней силы. Как трехосновная кислота она дает три типа солей: фосфаты –

Реакции хлорид-ионов
  Хлорид-ион является анионом сильной хлороводородной кислоты НС1. Большинство хлоридов растворимо в воде. Малорастворимы AgCl, Hg2Cl2, PbCl2, Cu

Реакции нитрат-ионов
Нитрат-ион является анионом сильной азотной кислоты. НNО3 является сильным окислителем. Все соли азотной кислоты растворимы в воде за исключением основных солей висмута, ртути и солей не

Работа 1
Дробное определение катионов: a) K+, NH4+, Ca2+, Ba2+ b) K+, NH4

Работа 2
Дробное определение катионов Fe2+, Fe3+, Cr3+, Cu2+ и анионов SO42-, CO32-, PO43-

Измерение аналитического сигнала
    Первые этапы количественного химического анализа – это отбор и подготовка пробы к анализу. После этих двух стадий наступает стадия, на которой определяют концентраци

Погрешность методов анализа
  Содержание той или иной составной части анализируемого вещества не определяют одним измерением, а находят в результате ряда операций и измерений. Между тем выполнение их может быть

Обработка результатов методом математической статистики
Цель всех аналитических исследований – нахождение результата, наиболее близкого к истинному содержанию в пробе. Общую погрешность метода можно оценить только с привлечением методов математ

Представление экспериментальных данных
xi n V (s или sr

Гравиметрические методы анализа
Гравиметрическим анализом называется метод количественного анализа, основанный на точном измерении массы определяемого компонента пробы, выделенного либо в элементарном виде, либо в виде со

Требования к осаждаемой форме
1. Осаждаемое соединение должно обладать как можно меньшей растворимостью в воде. После осаждения в исследуемом объеме раствора должно оставаться только такое количество данного соединения, которое

Требования к весовой форме
1. Точное соответствие состава определенной химической формуле, иначе невозможно провести вычисление результатов анализа. 2. Достаточная химическая устойчивость. Гравиметрическая форма не

Требования к осадителю
1. Осадитель должен быть летучим соединением. Если примеси не будут полностью удалены при промывании осадка, то они улетучатся при последующем прокаливании. Например, для осаждения Ва2+

Расчет количества осадителя
Согласно правилу произведения растворимости образование осадков происходит лишь при условии, если произведение концентраций соответствующих ионов превысит величину ПР осаждаемого соединения при дан

Образование осадков и их свойства
Осаждение считают важнейшей операцией гравиметрического анализа. При выполнении ее необходимо правильно выбрать осадитель, рассчитать его объем, соблюсти определенные условия осаждения, убедиться в

Условия осаждения кристаллических и аморфных осадков
Условия осаждения Достигаемый эффект К р и с т а л л и ч е с к и е о с а д к и Осаждение ведут из достаточно разбавленног

Фильтрование
Фильтрованием отделяют полученный осадок от раствора, содержащего посторонние примеси. Тщательность выполнения этой операции сказывается на точности определений. В гравиметрическом анализе

Вычисления в гравиметрическом анализе
Результаты гравиметрических определений чаще всего выражают в абсолютных величинах или в процентах к навеске вещества. Например, если в силикате определяют содержание SiO2, то для вычисл

Вопросы и задачи для самостоятельной подготовки
1. На чем основан гравиметрический метод анализа? 2. Каким требованиям должны удовлетворять осадки в гравиметрическом анализе? 3. Перечислите условия осаждения кристаллических и а

Титриметрический анализ
Этот метод основан на точном измерении объема раствора реактива, затраченного на реакцию с определяемым компонентом. Поэтому ранее этот метод анализа назывался объемным. Измерение проводят с помощь

Техника работы
Мерные колб

Растворы, применяемые в титриметрии
В титриметрии применяют растворы реагентов с точно известной концентрацией. Эти растворы называются стандартными (или титрованными). Различают первичные и вторичные стандартные растворы. Первичн

Расчеты в титриметрических методах анализа
В основе всех количественных расчетов результатов анализа лежит закон эквивалентов, в соответствии с которым вещества реагируют между собой в строго определенных эквивале

Коэффициент поправки
  В некоторых случаях не стремятся получить раствор точно требуемой концентрации (навеску вещества не берут точно теоретически рассчитанной), а вводят понятие поправочный к

Метод кислотно-основного титрования
Метод кислотно-основного титрования основан на протолитической реакции:

Работа 1. Стандартизация раствора хлороводородной кислоты по тетраборату натрия
  Бура удовлетворяет всем требованиям, предъявляемым к первичным стандартам - устойчива в широком интервале влажности воздуха, имеет большую массу эквивалента, точно соответствует сво

Работа 2. Определение устранимой жесткости (щелочности) воды
Устранимая или карбонатная жесткость воды обусловлена присутствием в растворе гидрокарбонатов кальция Ca(HCO3)2 и магния Mg(HCO3)2. Нали

Работа 3. Определение содержания гидроксида натрия
  Реагенты: 1. Хлороводородная кислота, НСl, 0,1 М раствор. 2. Индикатор метиловый оранжевый, 0,1%-ный водный раствор.   Выполнен

Работа 4. Определение содержания хлороводородной кислоты
  Реагенты: 1. Гидроксид натрия, NaOH, 0,1 М раствор. 2. Индикатор метиловый оранжевый, 0,1%-ный водный раствор.   Выполнение раб

Вопросы для самостоятельной подготовки
  1. Какие способы выражения концентраций вам известны? Что такое эквивалент, фактор эквивалентности, молярная масса эквивалента? 2. Что такое титрование? Дайте определение п

Комплексонометрическое титрование
Комплексонометрическое титрование основано на реакциях, при которых определяемые ионы металлов образуют комплексы с органическими соединениями – комплексонами (производными аминополикарбоновых кисл

Работа 5. Определение общей жесткости воды
  Общая жесткость воды (Жобщ) преимущественно обусловлена наличием в ней суммарных концентраций катионов Са2+ (кальциевая ЖCa) и Mg

Работа 6. Определение кальциевой и магниевой жесткости воды
  Раздельное определение Са2+ и Mg2+ в воде основано на хорошей растворимости Ca(OH)2 и малой - Mg(OH)2, а также возможностью комплексономе

Работа 7. Определение содержания меди
  Ионы меди образуют с ЭДТА комплексы голубого цвета. Условия прямого титрования определяются выбранным металлоиндикатором. В присутствии мурексида, образующего комплекс с медью зелен

Работа 8. Определение содержания железа (III)
  Реагенты: 1. Стандартный раствор ЭДТА, с(ЭДТА) = 0,025 М. 2. Индикатор сульфосалициловая кислота, 25%-ный водный раствор.   Вы

Вопросы для самостоятельной подготовки
  1. Изложить сущность метода комплексонометрии. 2. Чему равен фактор эквивалентности ЭДТА? 3. Объяснить особенности прямого, обратного, вытеснительного и косвенного

Окислительно-восстановительное титрование
Титриметрические методы, в которых в качестве титрантов используют растворы окислителей или восстановителей, называют окислительно-восстановительными методами титрования. В зависимости от

Перманганатометрия
В сильнокислой среде перманганат-ионы обладают высоким окислительно-восстановительным потенциалом, восстанавливаясь до Mn(II). Поэтому КMnO4 применяют для определения многих восстановите

Работа 9. Определение содержания железа (II)
  В основе определения лежит реакция: 10FeSO4 + 2KMnO4 + 8H2SO4 = 5Fe2(SO4)3 + 2MnSO4

Вопросы для самостоятельной подготовки
  1. Каким требованиям должны удовлетворять реакции окисления-восста-новления, чтобы их можно было использовать для количественного анализа? 2. Назовите особенности окислител

Физико-химические методы анализа
Химические методы анализа не всегда удовлетворяют современным требованиям, особенно при проверке чистоты веществ. Получить абсолютно чистое вещество практически невозможно, так как в нем тотчас про

Спектроскопические методы анализа
Эти методы основаны на способности атомов и молекул вещества испускать, поглощать или рассеивать электромагнитное излучение. По типу оптических явлений различают спектроскопию испускания,

Электрохимические методы анализа
  Эти методы основаны на измерении электрохимических свойств анализируемых образцов (электропроводности, электрического потенциала, величины силы тока). Достоинствами электрохимически

Методы хроматографического анализа
  Эти методы основаны на различиях в адсорбируемости веществ, константах ионного обмена, растворимости осадков и т.д. Хроматография – это метод разделения многокомпонентных смесей

Важнейшие физико-химические методы анализа
Метод Характеристика метода Аналитический сигнал (измеряемый параметр) Атомно-эмиссионный спектральный анализ (АЭС) Мет

Вопросы для самостоятельной подготовки
1. Назовите преимущества физико-химических методов анализа над химическими и их недостатки. 2. Перечислите физические свойства веществ, которые используются в физико-химических методах ана

Титриметрические методы анализа
  Пример 1. На титрование 10,00 мл раствора КОН затрачено 15,50 мл 0,1028 М раствора HCl . Вычислить молярную концентрацию раствора КОН. Решение.

Задачи для самостоятельного решения
1) На титрование навески технической соды массой 0,2005г израсходовано 20,00 мл 0,1010 М раствора HCl. Вычислить массовую долю Na2CO3 в анализируемом образце технической соды.

Геологического факультета
(По рекомендациям Совета по химии УМО университета РФ)   Программа составлена в соответствии с требованиями ГОС ВПО по специальности и направлению «Геология» и «Гидрогеология

Тема 2. Качественный анализ
Основные принципы качественного анализа. Аналитический сигнал. Аналитические химические реакции. Специфические и избирательные (селективные) реакции и реагенты. Аналитические реагенты, их маркировк

Тема 3. Количественный анализ
Методы количественного анализа: химические (гравиметрические и титриметрические) и физико-химические. Выражение результатов анализа. Измерение аналитического сигнала. Титриметрический анал

Дополнительная.
1. Васильев В.П., Кочергина Л.А., Орлова Т.Д. Аналитическая химия. Сборник вопросов и задач. ДРОФА, 2005. 320 с. 2. Дорохова Е.Н., Прохорова Г.В. Задачи и вопросы по аналитической химии. М

ГЕОЛОГИЧЕСКОГО ФАКУЛЬТЕТА
    Редактор Н.И. Корректор А.В. Компьютерная верстка С.А. Денисова     Подписано в печать

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги