рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ТЕМА 11. Аминокислоты, пептиды, белки

ТЕМА 11. Аминокислоты, пептиды, белки - раздел Химия, По курсу БИО Органическая химия Строение И Свойства Аминокислот И Пептидов. Аминокислоты...

Строение и свойства аминокислот и пептидов.

Аминокислоты соединения, в молекулах которых одновременно присутствуют амино- и карбоксильные группы. Природные a-аминокислоты являются биологически активными соединениями

Строение аминокислот. Все a-аминокислоты можно рассматривать как результат замены атома водорода в простейшей a-аминокислоте – глицине – на тот или иной радикал R. Таким образом, в соответствии с природой радикала R, называемого боковой цепью, a-аминокислоты подразделяют на 4 группы, отличающиеся гидрофильностью или гидрофобностью боковых цепей, а также способностью боковой цепи проявлять кислотные или основные свойства.

Стереохимия природных a-аминокислот характеризуется тем, что все они, кроме глицина, имеют асимметрический атом углеродa (атом, связанный и с амино-, и с карбоксильной группой), конфигурация которого может быть отождествлена с конфигурацией L- глицеринового альдегида путем цепи химических превращений:

Превращения либо не должны затрагивать хиральный центр, либо должны протекать строго стереоспецифично. Следовательно, все природные a-аминокислоты являются энантиомерами.

Конфигурация асимметрического центра аминокислот определяет биологические свойства как самих аминокислот, так и олиго- и полимерных соединений, мономерами которых служат остатки аминокислот (эти соединения называют пептидами).

Свойства аминокислот. Аминокислоты представляют собой бесцветные кристаллические вещества с довольно высокими температурами плавления (более 230 °С). Большинство кислот хорошо растворимы в воде и практически не растворимы в спирте и диэтиловом эфире, что указывает на солеобразный характер этих веществ. Специфическая растворимость аминокислот обусловлена наличием в молекуле одновременно аминогруппы (основный характер) и карбоксильной группы (кислотные свойства), благодаря чему аминокислоты принадлежат к амфотерным электролитам (амфолитам).

В водных растворах и твердом состоянии аминокислоты существуют только в виде внутренних солей — цвиттер-ионов.

Кислотно-основное равновесие для аминокислоты может быть описано:

Если к раствору аминокислоты приложено электрическое поле, то в зависимости от показателя рН раствора ионы аминокислоты будут перемещаться по-разному: в кислой среде при рН < 7 аммонийные ионы аминокислот перемещаются к отрицательному полюсу (катоду), а в щелочной среде при рН > 7 карбоксилат-ионы — к положительному полюсу (аноду). Значение рН, при котором молекула аминокислоты электронейтральна, называют изоэлектрической точкой и обозначают рI. При значении рН, равном показателю рI, молекула аминокислоты в электрическом поле не перемещается.

Наличие в молекуле одновременно амино- и карбоксильной группы отражается и на поведении аминокислот в тех реакциях, в которых участвует только одна из двух функциональных групп.

С участием карбоксильной группы могут протекать все реакции, характерные для карбоновых кислот с образованием соответствующих производных карбоновых кислот (сложных эфиров, ангидридов, амидов и т.п.).

 

При этом надо помнить о том, что аминогруппа легко окисляется, поэтому, например, для получения галогенангидридов аминокислот требуется предварительное ацилирование аминогруппы. После получения галогенангидрида ацильная защита гидролизуется.

Одна из важнейших реакций в организме — декарбоксилирование аминокислот. Отщепление СО2 происходит под действием особых ферментов — декарбоксилаз:

Аминогруппа, которая в аминах проявляет себя как нуклеофил, в биполярном ионе полностью лишена нуклеофильности из-за протонирования, поэтому ни реакция алкилирования по Гофману, ни ацилирование, свойтвенные аминам, не имеют места в случае аминокислот. Эти реакции могут происходить только при условии предварительного депротонирования аминогруппы, что достигается использованием реакционной среды с высоким значением рН, при которых цвиттер-ион полностью превращен в карбоксилат-анион.

Алкилирование осуществляют, действуя на полученные соли минокислот алкилгалогенидами в присутствии оснований (как органических, так и неорганических).

Ацилирование также требует предварительного превращения цвиттер-иона в карбоксилат-анион и успешно протекает при наличии в реакционной среде эквивалента основания (основание необходимо для связывания, выделяющегося при ацилировании кислого продукта – галогеноводорода или карбоновой кислоты).

Образование оснований Шиффа (как типичная реакция аминов) свойственно и аминокислотам; наиболее часто используют реакции аминокислот с бензальдегидом:

На образовании оснований Шиффа основана реакция идентификации аминокислот, известная как «нингидриновая проба», широко применяемая для визуализации зон аминокислот (возникает интенсивное сине-фиолетовое окрашивание) при их хроматографическом и электрофоретическом разделении, а также для количественного определения содержания аминокислот в растворах:

       
   
 
 

 

 


Дезаминирование аминокислот, как и всякого первичного амина, протекает при действии на аминокислоты азотистой кислоты. Эта реакция лежит в основе метода определения содержания азота и количества аминогрупп в аминокислотах (метод Ван-Слайка).

Биосинтез аминокислот. Все природные a-аминокислоты делят на незаменимые (валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин), которые поступают в организм только из внешней среды, и заменимые, синтез которых происходит в организме. Биосинтез a-аминокислот может происходить на основе не аминокислот, например по реакции восстановления a-кетокислот под действием НАДН. Реакция стереоспецифична вследствие стереоспецифичности НАДН.

В качестве исходных веществ при биосинтезе аминокислот могут выступать другие аминокислоты. Например, реакция транс-аминирования (переаминирования) является основной при синтезе a-аминокислот в организме.

Катализаторами и участниками этого процесса являются ферменты (аминотрансферазы) и кофермент пиридоксальфосфат, который служит переносчиком аминогруппы.

Пептиды. Амино- и карбоксильные группы аминокислот могут реагировать друг с другом, даже если они находятся в одной молекуле. Еще более реальным является образование межмолекуляр­ной амидной связи. Амиды, образовавшиеся в результате взаимодействия некоторого числа аминокислот, называют пептидами. В зависимости от числа аминокислотных остатков различают ди-, три-, тетра-, пентапептиды и т.д. При этом пептиды молекулярной массой не более 10 000 называют олигопептидами, молекулярной массой более 10 000 — полипептидами, или белками. Амидные связи в составе пептидов называют пептидными.

Пептидная группировка характеризуется рядом свойств.

1. Пептидная группировка имеет жесткую планарную структуру, т. е. все атомы, входящие в нее, располагаются в одной плоскости.

2. Атомы кислорода и водорода пептидной группировки природных пептидов и белков находятся в транс-положении по отношению к связи С—N, так как при транс-конфигурации заместителей боковые цепи оказываются наиболее удалены друг от друга, что важно для стабилизации структуры белковой молекулы.

3. Пептидная группа представляет собой трехцентровую р,p-сопряженную систему, которая образуется вследствие делокализации электронной плотности между атомами кислорода, углерода и азота. Длины связей С–О и С–N оказываются практически оди­наковыми.

4. Пептидная связь устойчива при температуре 310 К в средах, близких к нейтральной (физиологические условия). В кислой и щелочной средах связь подвергается гидролизу. В условиях организма гидролиз происходит ферментативно.

5. Дополнительные, как правило, нековалентные, связи между пептидной группой и боковыми цепями обусловливают существование различных конформаций белковой молекулы. Например, внутримолекулярные водородные связи (N—Н--О=С) стабилизируют вторичную структуру белка.

6. Пептидная группировка может существовать в двух резонансных формах (кетонной и енольной). Эти свойства пептидной группировки определяют строение полипептидной цепи:

 

 

Полипептидная цепь состоит из регулярно повторяющихся участков, образующих остов молекулы, и вариабельных участков – боковых радикалов аминокислотных остатков. Началом полипептидной цепи считают конец, несущий свободную аминогруппу (N-конец), а заканчивается полипептидная цепь свободной карбоксильной группой (С-конец).

Как правило, при изображении формулы пептида N-конец располагают слева, а С-конец — справа:

Называют пептид, последовательно перечисляя, начиная с N-конца, названия аминокислот, входящих в пептид; при этом суффикс «-ин» заменяют на суффикс «-ил» для всех аминокислот, кроме С-концевой. Для описания строения пептидов применяют не традиционные структурные формулы, а сокращенные обозначения, позволяющие сделать запись более компактной.

 

Понятие «строение пептида» (равно как и «первичная структура белка») включает в себя следующие характеристики:

1) общее число аминокислотных остатков;

2) перечень аминокислот, входящих в состав пептида, и указание количества аминокислотных остатков каждого вида (аминокислотный состав пептида или белка);

3) последовательность связывания аминокислот друг с другом (этот параметр называют аминокислотной последовательностью; он отражает так называемую первичную структуру пептида или белка); последовательность записывают слева направо от N-конца к С-концу.

Метод Эдмана (определение первичной структуры полипептида) заключается во взаимодействии N-концевой аминокислоты с фенилизотиоцианатом в щелочной среде. При дальнейшей обработке слабой кислотой без нагревания происходит отщепление от цепи «меченой» концевой ФТГ-аминокислоты. ФТГ-аминокислота идентифицируется методами тонкослойной или газожидкостной хроматографии. Преимущество метода Эдмана состоит в том, что при отщеплении каждой концевой a-аминокислоты остальная часть пептидной молекулы не разрушается и операции по отщеплению можно повторять.

Метод Эдмана пригоден для воспроизведения на автоматическом приборе – секвенаторе.

Особенности растворения полимеров. Размеры макромолекул высокомолекулярных соединений (ВМС) соизмеримы с размерами коллоидных частиц, что обусловливает общность ряда свойств, характерных для коллоидных растворов и растворов ВМС.

К таким свойствам относят малую скорость диффузии растворенных частиц, неспособность их проникать через мембраны, эффект Фарадея-Тиндаля и др. Однако растворы ВМС являются истинными, поскольку удовлетворяют основным критериям истинных растворов: самопроизвольность образования, гомогенность, термодинамическая устойчивость, равновесность.

Равновесие в растворах ВМС устанавливается медленнее, чем в истинных растворах, и, растворению, как правило, предшествует набухание. Набуханием называют самопроизвольный процесс односторонней диффузии низкомолекулярного растворителя в полимер, сопровождающийся увеличением объема и массы ВМС.

Различают неограниченное и ограниченное набухание. В первом случае полимер поглощает жидкость, а потом при той же температуре постепенно переходит в раствор (растворение желатина или крахмала в горячей воде). При ограниченном набухании процесс практически останавливается на стадии образования гетерогенной системы, состоящей из двух фаз: набухший полимер и низкомолекулярный растворитель. В этом случае равновесной системой является гель. Пример ограниченного набухания — набухание желатина или крахмала в холодной воде, набухание резины в бензоле. Тип набухания зависит от гибкости полимерной цепи: чем более гибкой является полимерная цепь, тем больше степень набухания и тем выше вероятность образования раствора. Количественно способность полимера набухать в тех или иных растворителях характеризуют степенью набухания.

Для амфотерных полиэлектролитов степень набухания зависит от рН среды. Белки в изоэлектрическом состоянии имеют минимальные значения степени гидратации, набухания, растворимости. Зависимость степени набухания белка от рН среды выражается кривой с двумя максимумами и одним минимумом, который соответствует изоэлектрической точке.

Качественные реакции. Для идентификации некоторых пептидов и белков используют так называемые «цветные реакции».

Универсальная реакция на пептидную группу — появление красно-фиолетовой окраски при добавлении к раствору белка ионов меди (II) в щелочной среде (биуретовая реакция).

Реакция на остатки ароматических аминокислот — тирозина и фенилаланина — появление желтой окраски при обработке раствора белка концентрированной азотной кислотой (ксантопротеиновая реакция).

Серасодержащие белки дают черное окрашивание при нагревании с раствором ацетата свинца(II) в щелочной среде (реакция Фоля).

По составу белки подразделяются на простые (неконъюгированные) и сложные (конъюгированные). При гидролизе простых белков в качестве продуктов расщепления получаются только a-аминокислоты. Сложные белки наряду с собственно белковой частью, состоящей из a- аминокислот, содержат органическую или неорганическую части непептидной природы, называемые простетическими группами.

Примерами сложных белков могут служить транспортные белки миоглобин и гемоглобин, в которых белковая часть — глобин — соединена с простетической группой — гемом. По типу простетической группы их относят к гемопротеинам. Фосфопротеины содержат остаток фосфорной кислоты, метал-лопротеины — ионы металла.

– Конец работы –

Эта тема принадлежит разделу:

По курсу БИО Органическая химия

Государственное образовательное учреждение... Высшего профессионального образования... Тамбовский государственный университет им Г Р Державина...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ТЕМА 11. Аминокислоты, пептиды, белки

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Теории строения органических соединений
Первой возникла в начале XIX в. теория радикалов (Ж. Гей-Люссак, Ф. Велер, Ю. Либих). Радикалами были названы группы атомов, переходящие без изменения при химических реакциях из од

Алкены Алкадиены Алкины
СпН2п СпН2п-2 СпН2п-2 Рис. 1. Классификация органических соединений по строению

Электронное строение атома углерода. Гибридизация.
Для валентного электронного слоя атома С, находящегося вглавной подгруппе четвёртой группы второго периода Периодической таблицы Д. И. Менделеева главное квантовое число n = 2, побочное (орбитально

Сопряженные системы
Различают два типа сопряженных систем (и сопряжений). 1. p, p-сопряжение — электроны делокализованы

ТЕМА 3. Химическое строение и изомерия органических соединений
Изомерия органических соединений. Если два или больше индивидуальных веществ имеют одинаковый количественный состав (молекулярную формулу), но отличаются друг от друга пос

Конформации органических молекул
Поворот вокруг s-связи С–С совершается сравнительно легко, углеводородная цепь может принимать разные формы. Конформационные формы легко переходят друг в друга и поэтому не являются различными соед

Конформации циклических соединений.
Циклопентан. У пятичленного цикла в плоской форме валентные углы равны 108°, что близко к нормальному значению для sр3-гибридного атома. Поэтому в плоском циклопентане, в отличие от цикл

Конфигурационные изомеры
Это стереоизомеры с различным расположением вокруг определенных атомов других атомов, радикалов или функциональных групп в пространстве относительно друг друга. Различают понятия диастере

Общая характеристика реакций органических соединений.
Кислотность и основность органических соединений. Для оценки кислотности и основности органических соединений наибольшее значение имеют две теории – теория Бренстеда и тео

Основания Бренстеда – нейтральные молекулы или ионы, способные присоединять протон (акцепторы протонов).
Кислотность и основность являются не абсолютными, а относительными свойствами соединений: кислотные свойства обнаруживаются лишь в присутствии основания; основные свойства – только в присутствии ки

Общая характеристика реакций органических соединений
Большинство органических реакций включает несколько по­следовательных (элементарных) стадий. Детальное описание со­вокупности этих стадий называется механизмом. Механизм реакции —

Селективность реакций
Во многих случаях в органическом соединении присутствуют несколько неравноценных реакционных центров. В зависимости от строения продуктов реакции говорят о региоселективности, хемоселективности и с

Радикальные реакции.
Хлор реагирует с предельными углеводородами только под влия­нием света, нагревания или в присутствии катализаторов, при­чем последовательно замещаются хлором все атомы водорода: СН4

Реакции электрофильного присоединения
Ненасыщенные углеводороды — алкены, циклоалкены, алкадиены и алкины — проявляют способность к реакциям присоединения, так как содержат двойные или тройные связи. Более важной in vivo является двойн

И элиминирования у насыщенного атома углерода
Реакции нуклеофильного замещения у sp3- гибридизованного атома углерода: гетеро­литические реакции, обусловленные поляризацией s- связи углерод - гетероатом (галогенопро

Реакции нуклеофильного замещения с участием sр2-гибридизованного атома углерода.
Механизм реакций этого типа рассмотрим на примере взаимодействия карбоновых кислот со спиртами (реакция этерификации). В карбоксильной группе кислоты реализуется р,p- сопряжение, поскольку пара эле

Реакции нуклеофильного замещения в ряду карбоновых кислот.
Только с чисто формальных позиций можно рассматривать кар­боксильную группу как комбинацию карбонильной и гидроксильной функций. Фактически их взаимное влияние друг на друга таково, что полностью и

Органических соединений.
  Окислительно-восстановительные реакции (ОВР) занимают большое место в органической химии. Важнейшее значение имеют ОВР для процессов жизнедеятельности. С их помощью организм удовлет

Участвующие в процессах жизнедеятельности
Подавляющее большинство органических веществ, участвующих в процессах метаболизма, представляют собой соединения с двумя и более функциональными группами. Такие соединения принято классифицировать

Двухатомные фенолы
Двухатомные фенолы – пирокатехин, резорцин, гидрохинон – входят в состав многих природных соединений. Все они дают характерное окрашивание с хлоридом железа. Пирокатехин (о-дигидроксибензол, катехо

Дикарбоновые и ненасыщенные карбоновые кислоты.
Карбоновые кислоты, содержащие в своем составе одну карбоксильную группу, называют одноосновными, две — двухосновными т. д. Дикарбоновые кислоты – белые кристаллические вещества, обладающи

Аминоспирты
2-Аминоэтанол (этаноламин, коламин) – структурный компонент сложных липидов, образуется путем размыкания напряженных трехчленных циклов этиленоксида и этиленимина аммиаком или водой соответственно

Гидрокси- и аминокислоты.
Гидроксикислоты содержат в молекуле одновременно гидроксильную и карбоксильную группы, аминокислоты — карбоксильную и аминогруппу. В зависимости от расположения гидрокси- или аминогруппы п

Оксокислоты
Оксокислоты — соединения, содержащие одновременно карбоксильную и альдегидную (или кетонную) группы. В соответствии с этим различают альдегидокислоты и кетокислоты. Простейшей альдегидокис

Гетерофункциональные производные бензола как лекарственные средства.
Последние десятилетия характеризуются появлением множества новых лекарственных средств и препаратов. Вместе с тем большое значение продолжают сохранять некоторые группы известных ранее лекарственны

ТЕМА 10. Биологически важные гетероциклические соединения
  Гетероциклические соединения (гетероциклы) – соединения, включающие в цикл один или несколько атомов, отличных от углерода (гетероатомов). Гетероциклические системы лежат в основе с

Пространственное строение полипептидов и белков
Для высокомолекулярных полипептидов и белков наряду с первичной структурой характерны более высокие уровни организации, которые принято называть вторичной, третичной и четвертичной структурами.

ТЕМА 12. Углеводы: моно, ди- и полисахариды
  Углеводы разделяют на простые (моносахариды) и сложные (полисахариды). Моносахариды (монозы). Это гетерополифункциональные соединения, содержащие карбонильную и несколько г

ТЕМА 13. Нуклеотиды и нуклеиновые кислоты
  Нуклеиновые кислоты (полинуклеотиды) – это биополимеры, мономерными звеньями которых являются нуклеотиды. Нуклеотид представляет собой трехкомпонентную структуру, состоящую

Нуклеозиды.
Гетероциклические основания образуют N-гликозиды с D-рибозой или 2-дезокси-D-рибозой. В химиии нуклеиновых кислот такие N-гликозиды называют нуклеозидами. D-рибоза и 2-дезокси- D -рибоза в состав п

Нуклеотиды.
Нуклеотидами называются фосфаты нуклеозидов. Фосфорная кислота обычно этерифицирует спиртовый гидроксил при С-5' или С-3' в остатке рибозы или дезоксирибозы (атомы цикла азотистых оснований нумерую

Стероиды
Стероиды широко распространены в природе, выполняют в организме разнообразные функции. К настоящему времени известно около 20 000 стероидов; более 100 из них применяется в медицине. Стероиды имеют

Стероидные гормоны
Гормоны – биологически активные вещества, образующиеся в результате деятельности желез внутренней секреции и принимающие участие в регуляции обмена веществ и физиологических функций в организме.

Стерины
Как правило, клетки очень богаты стеринами. В зависимости от источника выделения различают зоостерины (из животных), фитостерины (из растений), микостерины (из грибов) и стерины микроорганизмов. В

Желчные кислоты
В печени стерины, в частности холестерин, превращаются в желчные кислоты. Алифатическая боковая цепь у С17 в желчных кислотах, производных углеводорода холана, состоит из 5 атомов углеро

Терпены и терпеноиды
Под этим названием объединяют ряд углеводородов и их кислородсодержащих производных — спиртов, альдегидов и кетонов, углеродный скелет которых построен из двух, трех и более звеньев изопрена. Сами

Витамины
Витаминами обычно называют органические вещества, присутствие которых в небольшом количестве в пище человека и животных необходимо для их нормальной жизнедеятельности. Это классическое опр

Житрорастворимые витамины
Витамин А относится к сесквитерпенам, содержится в масле, молоке, яичном желтке, рыбьем жире; свиное сало и маргарин его не содержат. Это витамин роста; недостаток его в пище вызыв

Водорастворимые витамины
В конце прошлого века тысячи моряков на японских судах страдали, а многие из них умирали мучительной смертью от таинственной болезни «бери-бери». Одной из загадок бери-бери было то, что моряки на с

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги