рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Жирорастворимые витамины

Жирорастворимые витамины - раздел Химия, БИОХИМИЯ. БЕЛКИ. АМИНОКИСЛОТЫ -- СТРУКТУРНЫЕ КОМПОНЕНТЫ БЕЛКОВ Жирорастворимые Витамины. Витамин А Химическое Название - Ретинол, К...

Жирорастворимые витамины.

Витамин А химическое название - ретинол, клиническое название - антиксерофтальмический. Ретинол состоит из кольца бета-ионона и боковой цепи содержащий два остатка изопрена и первичную спиртовую группу, представляет собой циклический непредельный одноатомный спирт.

В продуктах витамин А может находится в виде эфиров-ретинилпалбмитата, ретинилацетата, ретинилфосфата. В организме ретинол окисляется в активные формы альдегидное производное - ретиналь (вместо спиртовой группы в 15 положении альдегидное и далее окисляется альдегидная группа до карбоксильной (-СООН) и образуется ретиноевая кислота. В растительных продуктах содержится провитамины А-каратиноиды, наиболее эффективные - ?-каротин, который содержит 2-кольца ?-иона и 4 остатка изопрена. Каротины в слизистой кишечника и в печени превращаются в активную форму витамина А под влиянием каротин-диоксигеназы. Ретинол содержит двойные связи, которые легко разрушаются при хранении и доступе кислорода.

Биологические эффекты витамина А.

Основные биологические эффекты витамина А обусловлены его производными - ретиналем и ретиноевой кислотой. К этим эффектам витамина А относят:

1.Участие в процессах адаптации зрения в темноте.

Известно, что сетчатка глаз содержит 2 типа рецепторных клеток палочки и колбочки, первые содержат зрительный пигмент родопсин, а вторые йодопсин. Оба пигмента отличаются белковым компонентом, но простетическая часть одинаковая -11-цис-ретиналь, производное витамина А.

Витамин А (ретинол, его транс-форма)в тканях окисляется под влиянием алкогольдегидрогеназы и кофермента НАД+ с образованием транс-ретиналя и НАД•Н+Н+.

Транс-ретиналь превращается при участии ретинальизомеразы в цис-ретиналь, последний в темноте соединяется с белком оксином, образуя родопсин, что обеспечивает повышение светочувствительности клеток сетчатки глаза при слабом освещении. Под действием кванта света происходит фотоизомеризация 11-цис-ретиналя в транс-ретиналь в составе родопсина. После этого превращения родопсин распадается на транс-ретиналь и опсин.

В результате этих процессов происходит местная деполяризация мембраны светочувствительных клеток сетчатки и возникает нервный импульс, распространяющийся по нервному волокну. После распада родопсина снижается чувствительность глаза к свету.

В темноте происходитрегенерацияродопсина:транс-ретиналь>транс-ретинол>цис-ретинол>цис-ретиналь, который соединяется с опсином и вновь образуется родопсин

 

2. Другое производное витамина А-ретиноевая кислота - участвует в регуляции деления дифференцировки быстро пролиферирующих (делящихся) тканей-хрящя, костной ткани, сперматогенного эпителия и плаценты, эпителия кожи и слизистых, стимулирует рост и дифференцировку клеток развивающегося организма-эмбриона, молодого организма. Эти эффекты ретиноевой кислоты объясняют стимуляцией определённых генов. Ретиноевая кислота, как сигнальная молекула, обладает гидрофобными свойствами, проникает через плазматическую мембрану и взаимодействует с рецепторами в ядре клеток-мишеней. Образовавшийся комплекс гормон-рецептор связывается с определёнными участками ДНК и стимулирует транскрипцию генов.

3. В структуре витамина А много ненасыщенных связей, что способствует его участию в окислительно-восстановительных

Известно, что сетчатка глаза содержит 2 типа рецепторных клеток палочки и колбочки, первые содержат зрительный пигмент родопсин, а вторые йодопсин. Оба пигмента отличаются белковым компонентом,но простетическая часть одинаковая-11-цис-ретиналь,производное витамина А.

Витамин А9ретинол,его трас форма) в тканях окисляется под влиянием алкогольдегидрогеназы и кофермента НАД+ с образованием транс ретиналя и НАД•Н+Н+.

Транс-ретиналь превращается при участии ретинальизомеразы в цис-ретиналь,последний в темноте соединяется с белком оксином, образуя родопсин, что обеспечивает повышение светочувствительность клеток сетчатки глаза при слабом освещении.Под действием кванта света происходит фотоизомеризация 11-цис-ретиналя в транс-ретиналь в составе родопсина.После этого превращения родопсин распадается на транс-ретиналь и опсин. В результате этих процессов происходит местная деполяризация мембраны светочувствительных клеток сетчатки и возникает нервный импульс, распространяющийся по нервному волокну.После распада родопсина снижается чувствительность глаза к свету.В темнотепроисходитрегенерацияродопсина:транс-ретиналь>транс-ретинол>цис-ретинол>цис- ретиналь,который соединяется с опсином и вновь образуется родопсин.(рис.1.)

2. Другое производное витамина А – ретиноевая кислота – участвует в регуляции деления и дифференцировки быстро пролиферирующих (делящихся) тканей - хряща, костной ткани, сперматогенного эпителия и плаценты, эпителия кожи и слизистых, стимулирует рост и дифференцировку клеток развивающегося организма – эмбриона, молодого организма. Эти эффекты ретиноевой кислоты объединяют стимуляцией определенных генов. Ретиноевая кислота, как сигнальная молекула, обладающая гидрофобными свойствами, проникает через плазматическую мембрану и взаимодействует с рецепторами в ядре клеток-мишеней. Образовавшийся комплекс гормон-рецептор связывается с определенными участками ДНК и стимулирует транскрипцию генов.

3. В структуре витамина А много ненасыщенных связей, что обуславливает его участие в окислительно-восстановительных процессах, антиокислительные свойства. Обладая гидрофобностью витамин А, снижает интенсивность свободно-радикального окисления липидов (перекисного окисления липидов (ПОЛ)), повышает эффект других антиоксидантов – витамина Е.

Гипо- и авитаминоз

Так как витамин А и его производные участвуют в светочувствительных процессах зрения, то наиболее ранним признаком недостаточности является нарушение адаптации зрения в сумерках, темнте, затем развивается авитаминоз – ночная слепота («куриная» слепота) – гемералопия. Из-за участия ретиноевой кислоты в процессах роста и развития в молом возрасте недостаток витамина А проявляется задержкой роста. Харктерно для авитаминоза А нарушение процсессов эпителизации, развивается ороговение эптелия выводных протоков слезных желез, что приводит к сухости роговицы (ксефтальмии). Из-за недостатка слезы, обладающей бактериацидным действием, развивается воспаление конъюктивиты, под действием микрофлры происходит изъязвление и размягчение роговицы – ксератомаляция. Отсутствие лечения может вызвать поражение эпителия (бельмо) и полной потери зрения – слепоте (амблиопии).

Авмтаминоз А может вызвать поражение эпителия различных органов (желудочно-кишечного тракта, кожи, дыхательного аппарата, мочеполовой системы). Причины гиповитаминоза и авитаминоза А.

1. Недостаток в пище (голодание).

2. Нарушение всасывания липидов в кишечнике.

3. Заболевания печени, при которых нарушаются процессы превращения провитаминов (каротинов) в витамин А.

4. Повышенная потребность в витамине (у водителей транспорта, работающих в ночное время).

Суточная потребность витамина А составляет 1,0-2,5 мг у взрослого человека и от 2 до 5 мг ?-каротинов.

Источники: Витамин А содержится только в животных продуктах: печени крупного рогатого скота, яичном желтке, сливочном масле, особенно богат витамином А рыбий жир.

В растительных продуктах содержится провитамины А – каротиноиды. Их много в продуктах красного цвета – моркови, томатах, перце, меньше в свекле. В слизистой оболочке кишечника и в печени содержится фермент - каротиндиоксигеназа, превращающий каратиноиды в активность форму – витамин А.

Витамин Д (антирахитический витамин).

Свойствами этого витамина обладает группа стероидов, называемая кальциферолами. Наиболее активны витамины Д2 и Д3. Витамин Д2 – эргокальциферол, производные эргостерина, встречающегося в растительных продуктах (в растительном масле, а также в дрожжах и в грибах). Витамин Д3 – холекальциферол, производное 7-дегидрохолестерина, имеющийся в организме человека и животных. Активные формы – кальциферолы образуются из своих предшественников под действием ультрафиолетового облучения.

Роль в обмене веществ.

Основной источник витамина Д в организме это, содержащийся в коже, 7-дегидрохолестерин, который под влиянием ультрафиолетовых лучей превращается в холекальциферол (витамин Д3). Эта форма витамина соединяется с белком и транспортируется в печень, где гидроксилируется под влиянием 25-гидролазы и образуется 25-гиддроксихолекальциферол (25-ОН Д3). Дальнейшее гидроксиирование происходит в почках, где образуется из 25-гидрохолекальциферола под влиянием 1-ОН гидроксилазы 1,25-дигидроксихолекальциферол или кальцитриол. Эта активная форма витамина Д является сигнальной молекулой, так как действует через рецепторы и некоторые авторы относят ее к гомонам.

Активность 1-?-гидроксилазы почек повышается под влиянием паратгормона. Таким образом паратгормон регулирует образование кальцитриола, который также выполняет роль сигнальной молекулы, участвуя в регуляции уровня Са2+ и фосфатов в крови органы мишени кальцитриола – кишечник, почки и кости. Так как кальцитриол является стероидом, то он проникает через мембрану и связывается с внутриклеточными рецепторами.

Биологическая роль кальцитриола:

1. Стимуляция всасывания Са2+ в кишечнике путем увеличения синтеза в эритроцитах кальцийсвязывающего белка – кальбиндина Д. В результате этого повышается концентрация Са2+ во внеклеточной жидкости.

2. Способствует минерализации (кальцификации) костной ткани, поддерживая высокую концентрацию Са2+ и Р во внеклеточной жидкости.

3. Увеличивает реабсорбцию Са2+ и Р в почках.

При связывании кальцитриола с рецепторами остеобластов увеличивается синтез кальцийсвязывающих белков (КСБ), остеокальцина и повышается активность щелочной фосфатазы, что способствует процессам кальцификации.

При низкой концентрации Са2+ в крови кальцитриол стимулирует мобилизацию Са2+ из костей.

Гиповитаминоз и авитаминоз Д.

При недостатке витамина Д в организме, нарушении синтеза кальцитриола из предшественников или из-за дефекта рецепторов кальцитриола в клетках-мишенях нарушается всасывание кальция в кишечнике, реабсорбция его в почках. Это приводит к снижению кальция во внеклеточной жидкости и в крови. Снижение концентрации Са2+ в крови стимулирует секрецию паратгормона и вследствие этого мобилизацию ионов кальция из кости.

Недостаточная минерализация костной ткани и усиление в ней процессов мобилизации кальция приводит к развитию рахита, при котором поражаются кости черепа, деформируются трубчатые кости ног (х-образные или о-образные голени). Грудная клетка вместе с грудиной при рахите выступает вперед (килевидная, птичья грудная клетка), наблюдаются «четки» на ребрах. Недостаток кальция приводит к снижению тонуса мышц, что проявляется у детей увеличением и выпячиванием живота.

К ранним признакам гиповитаминоза Д у детей относятся нарушения скорости зарастания родничков, задержка прорезывания зубов.

У взрослых гиповитаминоз Д проявляется остеомаляцией, у женщин во время беременности при гиповитаминозе увеличивается поражение зубов кариесом, в крови увеличивается активность щелочной фосфатазы.

При избыточном поступлении в организм витамина Д может развиться гипервитаминоз, который характеризуется избыточным отложением солей кальция в тканях легких, почек, сердца, стенках сосудов.

При гиповитаминозе развивается остеопороз, который проявляется частыми переломами костей.

Гипервитаминозы встречаются значительно реже, чем гиповитаминозы, которые особенно часто развиваются у детей грудного возраста.

Причины гиповитаминозов Д.

1. Недостаточное поступление витамина с пищей, особенно при искусственном вскармливании детей грудного возраста.

2. Недостаточная инсоляция приводит к нарушению превращения 7-дегидрохолестерина в холекальциффол (рахит – «болезнь подвалов»).

3. Нарушение всасывания витамина в тонком кишечнике.

4. Недостаток паратгормона.

Таким образом, рахит – это не только дефицит витамина Д3 в пище, а нарушение любого из всех процессов его превращения. Профилактика рахита заключается в достаточном солнечном облучении ребенка или использование небольших доз витамина Д.

Суточная потребность витамина 12-25 мкг (500-1000 МЕ). Потребность в витамине Д различна в разные возрастные периоды, она больше у детей и уменьшается у взрослых.

Источники витамина. Этот жирорастворимый витамин содержится в наибольших количествах в продуктах животного происхождения: яичный желток, сливочное масло, рыбий жир, печень.

Витамин Е (клиническое название – антиоксидантный, химическая название - токоферолы).

Витамин Е по химической природе является метильным производным токола. К витамину Е относят семейство 8 типов токоферолов (?, ?, ?, ? и т.д. токоферолы), среди которых наиболее активным является ?-токоферол. Витамин был выделен из зародышей пшеничных зерен. Название – токоферол (несущий потомство) – произошло на основании экспериментальных данных о предупреждении бесплодия у животных, поэтому этот витамин раньше имел клиническое название – антистерильный однако в дальнейшем оказалось, что эти вторичные эффекты витамина Е обусловлены его антиоксидантным действием.

Роль в обмене веществ

Токоферол является природным липофильным антиоксидантом, так как он способен инактивировать свободные радикалы. Из-за гидрофобности антиоксидантные свойства витамина Е проявляются, прежде всего, в липидном слое биомембран и таким образом предотвращается развитие цепи перекисного окисления и липидов обеспечивается стабильность биологических мембран. Токоферол отдает атом водорода свободному радикалу пероксида липида (ROO*), восстанавливая его до гидропероксида (ROOH) и таким образом останавливается развитие ПОЛ. Свободный радикал витамина Е, образовавшийся в результате реакции, стабилен и не способен участвовать в развитии цепи. Токоферол повышает биологическую активность витамина А, защищая от окисления его ненасыщенную боковую цепь.

Гиповитаминоз Е.

Недостаточность витамина Е в отличие от других витаминов не отличается специфическими клиническими проявлениями. Это обусловлено тем, что при недостатке токоферола активируются свободнорадикальные процессы, особенно в липидах биомембран, что проявляется разнообразными нарушениями. Наиболее характерные признаки гиповитаминоза Е наблюдается у недоношенных детей, когда поражаются биомембраны, клеток и, прежде всего, эритроцитов, что приводит к развитию гемолитической анемии. Таким образом, гиповитаминоз Е характеризуется патологией мембран, одним из признаков которой является гемолиз.

При экспериментальном гиповитаминозе Е развивается атрофия семенников, бесплодие, рассасывание плода при беременности. Исходя их этих первых исследований гиповитаминоза, витамин Е раньше называли антистерильным витамином. Однако, в дальнейшем, выяснилось, что в основе наблюдаемых нарушений лежит активация свободно-радикального окисления и витамин назвали антиоксидантом.

Суточная потребность в витамине – 5 мг.

Источник витамина – растительные масла, особенно оливковое, облепиховое масла, сардины, салат, семена злаков (проросшие семена пшеницы), сливочное масло, яичный желток.

Одной из причин гиповитаминоза Е – искусственное вскармливание новорожденных, так как в коровьем молоке в 10 раз меньше витамина Е, чем в женском молоко. Поэтому обязательно добавление витамина Е в питании недоношенных детей при искусственно вскармливании.

Витамин К – антигеморрагический витамин.

К этому витамину относятся и К2 – менахинон, фарнохинон – синтезируется микрофлорой кишечника. Название витамина произошло от koagulation –свертывание крови.

Роль в обмене веществ.

Витамин К – объединенное название для группы производных нафтохинона (гидрохинона, эпоксида и хинона). Эти соединения не являются компонентами системы свертывания крови, но необходимы для активации факторов свертывания: протромбина (II), проконвертина (VII), фактора Стюарта (X) и фактора Кристамаса (IX). При окислении форм витамина К активируется карбоксилаза глутаминовой кислоты.

Образующийся карбоксиглутамин связывает Ca2+, необходимый для связывания тромбина с тромбоцитарными мембранами.

Авитаминоз проявляется в виде геморрагий подкожных, внутримышечных, носовых. Особенно опасны внутренние кровотечения.

Причины авитаминоза. Так как витамин К синтезируется микрофлорой кишечника, то основная причина гиповитаминоза состоит в нарушении всасывания этого жирорастворимого витамина из-за нарушения секреции желчи, заболеваний печени.

Суточная потребность – 1-2 мг.

Наиболее богатыми источники витамина является шпинат, капуста томаты, рябина, печень. Так как причиной гиповитаминоза не является отсутствие его в пище, а нарушение его всасывания, то стояла проблема создания водорастворимых форм этого витамина.

Такие формы были синтезированы и они используются как фармацевтические преараты. Один из них – водорастворимая форма витамина К – викасол.

В быту для борьбы с грызунами используется антивитамин К – варфарин – антикоагулянт, так как он похож по строению на витамин К и действует как конкурент витамина.

Предыдущий раздел Раздел верхнего уровня Следующий раздел

– Конец работы –

Эта тема принадлежит разделу:

БИОХИМИЯ. БЕЛКИ. АМИНОКИСЛОТЫ -- СТРУКТУРНЫЕ КОМПОНЕНТЫ БЕЛКОВ

БЕЛКИ АМИНОКИСЛОТЫ СТРУКТУРНЫЕ КОМПОНЕНТЫ БЕЛКОВ... БЕЛКИ... Белки это азотсодержащие высокомолекулярные органические соединения состоящие из аминокислот соединенных в цепи с...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Жирорастворимые витамины

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Биохимия
1. Введение в биохимию 1.1. БЕЛКИ. АМИНОКИСЛОТЫ -- СТРУКТУРНЫЕ КОМПОНЕНТЫ БЕЛКОВ 1.2. Строение и классификация аминокислот 1.3. Уровни структурной организации

IV. Иминокислота
Вместе с тем в настоящее время общепринятой является классификация аминокислот на основе признаков, свойственных R-группам, в частности, их полярности, т.е. способности R-групп взаимодейств

Полярные положительно заряженные.
Аминокислоты, содержащие неполярные R-группы. В боковой цепи этих аминокислот содержатся неполярные, неионные группы. К данному классу относятся алифатическ

К этой группе относят аспарагиновую и глутаминовую аминокислоты, имеющие в боковой цепи дополнительную карбоксильную группу, способную к диссоциации.
Следовательно, боковые группы данных аминокислот – анионы. Ионизированные формы глутаминовой и аспарагиновой кислот называют соответственно глутаматом и аспартатом.

Уровни структурной организации белковых молекул
Пептидные цепи содержат десятки, сотни и тысячи аминокислотных остатков, соединенных прочными пептидными связями. За счет внутримолекулярных взаимодействий белки образуют определенную пространствен

Белковые модули (домены)
Обычно белки, образованные одной полипептидной цепью, представляют собой компактное образование, каждая часть которого не может функционировать и существовать отдельно, сохраняя прежнюю структуру.

Активный центр белка и взаимодействие его с лигандом.
Активный центр белка –это центр связывания белка с лигандом. На поверхности глобулы образуется участок, который может присоединять к себе другие молекулы называемые

Физико-химические свойства белков
Физико-химические свойства белков Первичная структура белков в значительной степени определяет вторичную, третичную структуры и особенности четвертичной структуры. В свою очередь, первична

Характеристика простых белков.
К простым белкам относят гистоны, протамины, альбумины и глобулины, проламины и глютелины, протеиноиды. Гистоны - тканевые белки многочисленных организмов, связаны с ДНК х

Альбумины и глобулины.
Альбумины (А) и глобулины (Г). А и Г белки, которые есть во всех тканях. Сыворотка крови наиболее богата этими белками. Содержание альбуминов в ней составляет 40-45 г/л, глобулинов 20-30 г

Проламины и глютелины.
Это группа растительных белков, которые содержатся исключительно в клейковине семян злаковых растений, где выполняют роль запасных белков. Характерной особенностью проламинов является то, что они н

Протеиноиды.
Белки опорных тканей ( костей, хрящей, сухожилий, связок ), кератины - белки волос, рогов, копыт, коллагены - белки соединительной ткани, эластин - белок эластических волокон. Все эти белк

Гемоглобин (Нв).
Гемоглобин имеет четвертичную структуру, молекулярная масса его 66-68 тыс.Да. Как следует из названия Нв представляет собой соединение гема с белком глобином. Это олигомерный белок, состоящий из 4

Типы гемоглобинов.
Гемоглобины могут различаться по белковой части. Различают физиологические и аномальные типы гемоглобинов. Физиологические типы образуются на разных этапах нормальног

ПРОТЕОГЛИКАНЫ
ГП - это сложные белки, содержащие олигосахаридные (гликановые) цепи, ковалентно связанные с белковой основой. К этой группе химических соединений относятся многие белки внешней поверхности цитопла

Участвуют в процессе свертывания крови.
Протромбин, фибриноген – являются белками свертывающей системы крови.   ПРОТЕОГЛИКАНЫ. Это углевод-белковые комплексы, углеводный компонент кото

Высшие жирные кислоты
С17 Н35 СООН Предельная Стеариновая С15 Н31 СООН Пальмитиновая

Свободные липопротеины.
Содержатся в плазме крови, все они имеют разную плотность (от 0,92 до 1,21 кг/л) благодаря липидному компоненту. В крови человека присутствуют несколько фракций ЛП, отличающихс

Структурные липопротеины ( протеолипиды ).
Они входят в состав биологических мембран и растворяются в неполярных растворителях (хлороформ, метанол). Причина такого поведения протеолипидов в том, что белок составляет сердцевину их молекулы,

НУКЛЕОПРОТЕИНЫ
Нуклепротеины – это сложные белки, небелковая часть которых представлена нуклеиновыми кислотами. Поскольку нуклеиновые кислоты бывают двух типов, нуклеопротеины делятся по составу на 2 группы: рибо

Номенклатура наиболее распространенных нуклеотидов.
РИБОНУКЛЕОЗИДМОНОФОСФАТЫ: 1. Аденозинмонофосфат ( АМФ ), адениловая кислота. 2. Гуанозинмонофосфат ( ГМФ ), гуаниловая кислота. 3. Цитидинмонофосфат ( ЦМФ ), цитид

Структура нуклеиновых кислот.
Первичные структуры РНК и ДНК построены однотипно, они представляют собой линейные полимеры – полинуклеотиды, состоящие из мононуклеотидов, соединенных 3',5' – фосфодиэфирными связями. При

Вторичная структура ДНК.
Особенностью нуклеотидного состава ДНК является то, что число адениловых нуклеотидов равно числу цитидиловых: А=Т, Г=Ц, следовательно, А+Г=Т+Ц, т.е. число пуриновых нуклеотидов равно числу пиримиди

Вторичная структура РНК.
Молекулы РНК построены из одной полинуклеотидной цепи. Отдельные участки цепи РНК образуют спирализованные петли "шпильки", за счет водородных связей между комплементарными азотистыми осн

Основные типы РНК.
По особенностям структуры и функциям различают 3 типа рибонуклеиновых кислот – транспортные РНК (тРНК), матричные РНК (мРНК) и рибосомальные РНК (рРНК). Они различаются по первичной структуре, моле

Третичная структура нуклеиновых кислот.
Одноцепочные РНК характеризуются компактной и упорядоченной третичной структурой, возникающей путем взаимодействия спирализованных участков вторичной структуры. Третичная структура РНК стабилизируе

ФОСФОПРОТЕИНЫ.
Фосфопротеины – это сложные белки, содержащие в своем составе в качестве простетической части фосфорную кислоту. Фосфорная кислота связана сложно – эфирной связью с белковой частью молекулы через г

Производные моносахаридов
Модификация имеющихся групп или введение новых заместителей в молекулу моносахаридов дает различные их производные. Они используются для построения разнообразных полимерных углеводов. Некоторые из

Олигосахариды
К олигосахаридам относятся сложные углеводы, имеющие от 2 до 10 звеньев моносахаридов соединенных гликозидными связями. Среди наиболее распространенных олигосахаридов следует отметить дисахариды –

Гомополисахариды (ПС).
Структурные различия между полисахаридами определяются: - строением моносахаридов, составляющих цепь - типом гликозидных связей, соединяющих мономеры в цепь - последовате

Гетерополисахариды
Гликозамингликаны – линейные отрицательно заряженные гетерополисахариды. Раньше их называли мукополисахаридами, так как они обнаруживались в слизистых секретах (мукоза) и придавали этим секретам вя

Жирные кислоты и ацилглицеролы.
ЖИРНЫЕ КИСЛОТЫ. Жирные кислоты – структурные компоненты различных липидов. Жирные кислоты липидов человека представляют собой углеводородную неразветвленную цепь на одном конце которой нах

ФОСФОЛИПИДЫ
Фосфолипиды – группа липидов, содержащих в своем составе остаток фосфорной кислоты. Фосфолипиды делят на глицерофосфолипиды, основу которых составляет глицерол и сфингофосфолипиды – производные ами

Сфинголипиды
Сфинголипиды – производные аминоспирта сфингозина. Аминоспирт сфингозинсостоит из 18 атомов углерода, содержит гидроксильные группы и аминогруппу.Примером сфинголипидов служат церамиды и сфингомиел

Стероиды
Стероиды – производныециклопентанпергидрофенантрена. В организме основной стероид – холестерол,остальные стероиды – его производные. Холестерол входит в состав мембран ивлияет на структуру бислоя,

Витамины
ВИТАМИНЫ В середине XIX века сложились представления о пищевой ценности белков, жиров, углеводов, минеральных веществ и воды. Однако экспериментальные исследования клинические наблюдения с

Рацион взрослого человека
Завтрак яичница (2 яйца, слив.масло 10г) творог (100г) бутерброд (хлеб 100г, слив. масло 10г) кофе (сахар 20г) Содержание витаминов: С –

Водорастворимые витамины
Водорастворимые витамины Витамин С. Клиническое название этого витамина – антискорбутный, а химическое название – аскорбиновая кислота. Витамин С не содержит карбоксильной группы,

ВИТАМИНОПОДОБНЫЕ ВЕЩЕСТВА.
Синтезируются в организме, но в недостаточном количестве. ПАБК (ПАРААМИНОБЕНЗОЙНАЯ К-ТА) 1.Участвует в образовании ФОЛИЕВОИ кислоты, 2.Участвует в образовании ряда фермен

Ферменты и неорганические катализаторы
ПОНЯТИЕ О ФЕРМЕНТАХ. Ферменты - это биологические катализаторы в основном белковой природы. Роль ферментов в организме огромна. В каждой клетке организма находится до 10000 молеку

Строение ферментов
Ферменты, являясь белками, повторяют все особенности структуры и состава белков (состоят из аминокислот, имеют 4 уровня структурной организации), физико-химические свойства белков. Ферменты, как и

Коферменты
КОФЕРМЕНТЫ Коферменты – небелковая часть сложных ферментов. Их делят на две группы: 1.Витаминные. 2.Невитаминные. Витаминные коферменты: 1.Тиаминовые ко

Свойства ферментов
СВОЙСТВА ФЕРМЕНТОВ. 1 .Высокая каталитическая активность. 2.Ферменты, являясь белками, проявляют термолабильные свойства - чувствительность к изменению температуры. При п

Специфичность действия ферментов.
Субстратная специфичность 1. Абсолютная специфичность. Ей обладают ферменты, которые действуют только на 1 субстрат и не действуют на другие субстраты. Уреаза катализирует гидроли

Номенклатура ферментов
Номенклатура ферментов. 1. Тривиальная номенклатура. Пример: пепсин, трипсин. 2. Рабочая номенклатура: название S + тип превращения + окончание «аза». пример: ла

Синтетазы
   

Механизм действия ферментов
Согласно современным представлениям при взаимодействии фермента с субстратом условно можно выделить 3 стадии: 1 стадия характеризуется диффузией субстрата к фермен

Кислотно-основный катализ.
В активном центре фермента содержатся группы кислотного и основного типа. Группы кислотного типа отщепляют Н+ и имеют отрицательный заряд. Группы основного типа присоединяют Н+ и имеют поло

А). Гипотеза Фишера.
Согласно ей имеется строгое стерическое соответствие субстрата и активного центра фермента. По Фишеру, фермент - это жёсткая структура, а субстрат является как бы слепком его активного цент

Обмен углеводов
ОБМЕН УГЛЕВОДОВ 1. Основные углеводы животного организма, их биологическая роль. 2. Превращение углеводов в органах пищеварительной системы. 3. Биосинтез и распад

Биологическая роль углеводов
БИОЛОГИЧЕСКАЯ РОЛЬ УГЛЕВОДОВ: 1. ЭНЕРГЕТИЧЕСКАЯ. При окислении1 г углеводов до конечных продуктов (СО2 и Н2О) выделяется 4,1-ккал энергии. На долю углеводов приходится около 60-70

Превращение углеводов в пищеварительном тракте
ПРЕВРАЩЕНИЕ УГЛЕВОДОВ В ПИЩЕВАРИТЕЛЬНОМ ТРАКТЕ Основными углеводами пищи для организма человека являются: крахмал, гликоген, сахароза, лактоза. Поступивший с пищей крахма

Биосинтез и распад гликогена
БИОСИНТЕЗ И РАСПАД ГЛИКОГЕНА В ТКАНЯХ. ГЛИКОГЕНОВЫЕ БОЛЕЗНИ. Было установлено, что гликоген может синтезироваться практически во всех органах и тканях. Однако наибольшая его конце

Анаэробный гликолиз
В зависимости от функционального состояния организма, клетки органов и тканей могут находиться как в условиях достаточного снабжения кислородом, так и испытывать его недостаток, то

Аэробный гликолиз (гексозодифосфатный путь)
ГЕКСОЗОДИФОСФАТНЫЙ ПУТЬ. Это классический путь аэробного катаболизма углеводов в тканях протекает в цитоплазме до стадии образования пирувата и завершается в митохондриях с образование кон

Аэробный гликолиз (гексозодифосфатный путь)
ГЕКСОЗОДИФОСФАТНЫЙ ПУТЬ. Это классический путь аэробного катаболизма углеводов в тканях протекает в цитоплазме до стадии образования пирувата и завершается в митохондриях с образование кон

Гексозомонофосфатный путь
ГЕКСОЗОМОНОФОСФАТНЫЙ ПУТЬ ПРЕВРАЩЕНИЯ ГЛЮКОЗЫ В ТКАНЯХ, ХИМИЗМ РЕАКЦИЙ. Окисление глюкозы по этому пути протекает в цитоплазме клеток и представлено двумя последовательными ветвям

Глюконеогенез
ГЛЮКОНЕОГЕНЕЗ Основными источниками глюкозы для организма человека являются: 1. углеводы пищи; 2. гликоген тканей; 3. глюконеогенез. ГЛЮКОНЕОГЕНЕЗ - это

Основные липиды организма человека их биологическая роль.
ЛИПИДАМИ называются сложные органические вещества биологической природы нерастворимые в воде, но растворимые в органических растворителях. ЛИПИДЫ являются основным продуктом питания. Они п

Переваривание липидов, ресинтез жира
Переваривание липидов. Поступающие с пищей ЛИПИДЫ в ротовой полости подвергаются только механической переработке. ЛИПОЛИТИЧЕСКИЕ ферменты в ротовой полости не образуются. Переваривание жир

Липопротеины крови
ЛИПИДЫ являются нерастворимыми в воде соединениями, поэтому для их переноса кровью необходимы специальные переносчики, которые растворимы в воде. Такими транспортными формами являются ЛИПОПРОТЕИНЫ.

Окисление высших жирных кислот
Жировая ткань, состоящая из адипозоцитов, выполняет специфическую роль в липидном обмене. Около 65% массы жировой ткани приходится на долю отложенных в ней триацилглицеролов (ТАГ) - они представляю

Биосинтез ВЖК в тканях
Биосинтез ВЖК происходит в эндоплазматической сети клеток. Заменимые ВЖК (все предельные и непредельные, имеющих одну двойную связь) синтезируются в клетках из АЦЁТИЛ-КоА. Условиями для би

Обмен холестерина
Обмен холестерина. Холестерин является предшественником в синтезе стероидов: желчных кислот, стероидных гормонов, витамина D3.Холестерин является обязательным структурным компон

Переваривание белков
Переваривание белков в пищеварительном тракте Пищевые белки подвергаются гидролитическому расщеплению под действием ПРОТЕОЛИТИЧЕСКИХ ФЕРМЕНТОВ (класс – гидролазы, подкласс - пептидазы).

Гниение аминокислот, обезвреживание продуктов гниения
ГНИЕНИЕ АМИНОКИСЛОТ Аминокислоты, которые не подверглись всасыванию, поступают в толстую кишку, где подвергаются гниению. ГНИЕНИЕ АМИНОКИСЛОТ - это процесс распада аминокислот под действие

Метаболизм аминокислот
Метаболизм аминокислот Источниками аминокислот в клетке являются: 1. белки пищи после их гидролиза в органах пищеварения; 2. синтез заменимых аминокислот;

Пути обезвреживания аммиака
Аммиак образуется из аминокислот при распаде других азотсодержащих соединений (биогенных аминов, НУКЛЕОТИДОВ). Значительная часть аммиака образуется в толстой кишке при гниении. Он всасывается в кр

Регуляция обмена веществ
СИГНАЛЬНЫЕ МОЛЕКУЛЫ. Основные задачи регуляции метаболизма и клеточных функций: 1. внутриклеточное и межклеточное согласование обменных процессов; 2. исключение «холостых

Гормоны гипоталамуса
ГОРМОНЫ ГИПОТАЛАМУСА ГИПОТАЛАМУС является компонентом и своеобразным «выходным каналом» лимбической системы. Это отдел промежуточного мозга, контролирующий различные параметры гом

ГОРМОНЫ ГИПОФИЗА
ГОРМОНЫ ГИПОФИЗА   В гипофизе выделяют переднюю (аденогипофиз) и заднюю доли (нейрогипофиз).   Гормоны аденогипофиза можно разделить на 3 группы в зави

ГОРМОНЫ ГИПОФИЗА
ГОРМОНЫ ГИПОФИЗА   В гипофизе выделяют переднюю (аденогипофиз) и заднюю доли (нейрогипофиз).   Гормоны аденогипофиза можно разделить на 3 группы в зави

Биосинтез йодтиронинов
Синтез йодтиронинов происходит в составе белка – тиреоглобулина, который находится в фолликулах щитовидной железы. Тиреоглобулин представляет собой гликопротеин, содержащий 115 остатков тирозина. П

Обмен липидов
В печени жировой ткани гормоны стимулируют липолиз. Указанные эффекты на обмен углеводов и липидов связывают с повышением чувствительности клеток к действию адреналина под влиянием тиреоидных гормо

Гипосекреция
В детском возрасте снижение секреции приводит к задержке физического и умственного развития (кретинизм). У взрослых тяжелым проявлением недостатка гормонов щитовидной железы является миксе

Гиперсекреция
Диффузный токсический зоб (базедова болезнь) наиболее распространенное заболевание, сопровождающееся повышенной продукцией йодтиронинов. При этом заболевании размеры щитовидной железы увеличены и р

ГОРМОНЫ ПАРАЩИТОВИДНЫХ ЖЕЛЕЗ
Паратгормон синтезируется в паращитовидных железах и состоит из 84 аминокислотных остатков. Гормон хранится в секреторных гранулах. Секреция ПТГ регулируется уровнем кальция в крови: при сни

Гормоны половых желез
Гормоны половых желез   По химической природе представляют собой стероиды. Выделяют: 1. Андрогены; 2. Эстрогены; 3. Прогестины.  

Гормоны надпочечников
Гормоны надпочечников Надпочечники – железы внутренней секреции, в которых выделяют корковое и мозговое вещество. В корковом слое синтезируется гормоны стероидной природы, в мозгово

Гормоны поджелудочной железы
Гормоны поджелудочной железы Функции поджелудочной железы: · экзокринная; · эндокринная. Экзокринная функция заключается в синтезе и секреции пищеварительных фер

Экзаменационные вопросы
ФАРМАЦЕВТИЧЕСКИЙ ФАКУЛЬТЕТ (ЗАОЧНОЕ ОТДЕЛЕНИЕ) Экзаменационные вопросы по биологической химии для студентов 3 курса (6 семестр) 1. Биохимия, ее задачи. Связь биохимии с ф

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги