рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Физико-химические свойства белков

Физико-химические свойства белков - раздел Химия, БИОХИМИЯ. БЕЛКИ. АМИНОКИСЛОТЫ -- СТРУКТУРНЫЕ КОМПОНЕНТЫ БЕЛКОВ Физико-Химические Свойства Белков Первичная Структура Белков В Значи...

Физико-химические свойства белков

Первичная структура белков в значительной степени определяет вторичную, третичную структуры и особенности четвертичной структуры. В свою очередь, первичная и пространственная структуры белков, их молекулярная масса, форма и размеры обусловливают их физико-химические свойства.

Молекулярная масса белков достаточно большая, поэтому они относятся к высокомолекулярным соединениям. Молекулярная масса белков колеблется от 6 000 до 1 000 000 Дальтон и выше, она зависит от количества аминокислотных остатков в полипептидной цепи, а для олигомерных белков имеющих четвертичную структуру – от количества входящих в них протомеров (субъединиц).

Молекулярная масса некоторых белков составляет: инсулин - 5700Д,

Пепсин- 35 000Д, гемоглобин – 65 000Д.

Молекулярную массу белка можно определить по скорости седиментации при ультрацентрифугировании, т.е. при ускорении 100000-500000 G . На основании этого определяют коэффициент седиментации, который обозначают S ( в честь шведского ученого СВЕДБЕРГА). Он предложил за единицу коэффициента седиментации величину 10-13. Молекулярная масса большинства белков колеблется в пределах 1-20S.

Другим методом определения молекулярной массы является метод гельфильтрации (молекулярное просеивание). Используется искусственно созданные гранулы, имеющие поры (гранулы СЕФАДЕКСА). Внутрь гранулы могут проникать только соединения определённого размера: молекулы небольшого размера входят в гранулы, а большие быстрее вымываются. Молекулярная масса рассчитывается ориентировочно. Буфер не задерживается, а белок движется тем медленнее, чем меньше молекулярная масса.

Белки способны связываться с лигандами.

Белки специфично узнают свои лиганды, что обусловлено комплементарным

строением определенного участка белка и лиганда.

ИЗБИРАТЕЛЬНОСТЬ обеспечивается белковой частью гемоглобина. Центр связывания ЛИГАНДА называется активным центром. Это свойство лежит в основе другого метода разделения белков – аффинной хроматографии.

Белки имеют различную форму, но выделяют две основных группы: глобулярные (шарообразные) и фибриллярные (веретенообразные). Глобулярные белки более компактны, в этих белках гидрофильные группы расположены преимущественно снаружи, а гидрофобные – внутри, образуя ядро.

На основе различий белков в молекулярной массе, размеров и форме их можно разделить с помощью ультрацентрифугирования (по скорости седиментации), методом гель – фильтрации (молекулярного просеивания в сефадексе).

Различия в первичной структуре белков, их конфигурации, молекулярной массе, размерах определяют разнообразные свойства белков. Можно выделить несколько групп физико-химических свойств.

 

Электрохимические свойства белков.

Белки — амфотерные полиэлектролиты, т. е. подобно аминокислотам они обладают кислотными и основными свойствами. Эти свойства белка обусловлены электрохимической природой R-радикалов аминокислот, входящих в состав белка. Поскольку большая часть ионогенных и полярных R-групп находится на по­верхности белковой глобулы, то именно они определяют кислот­но-основные (амфотерные) свойства и заряд белковой молекулы. Кислые свойства белку придают аспарагиновая и глутаминовая аминокислоты, диссоциация их карбоксильных групп является источником отрицательных электрических зарядов на поверхности белковой молекулы. Основные свойства белку придают лизин, аргинин, гистидин, способные к протонированию и к созданию на поверхности белковой молекулы положительных зарядов. В амфотерную природу белковой молекулы вносят вклад (хотя и несущественный) ее N- и С-концевые аминокислоты. Слабая диссоциация SН-групп цистеина и ОН-групп тирозина весьма несущественно влияет на амфотерность белков. В целом, чем больше кислых аминокислот содержится в белке, тем сильнее выражены его кислотные свойства, тем выше суммарная плотность отрицатель­ного заряда, и чем больше основных аминокислот, тем ярче прояв­ляются основные свойства белка и выше плотность положительных зарядов на его молекуле. Однако следует отметить, что значения рК радикалов аминокислот колеблются в довольно широких пределах.

Амфотерная природа белков обусловливает определенную буферность их растворов. Однако при физиологических значениях рН она невелика. Исключение составляют белки, содержащие большое количество гистидина, так как только боковые имидазольные группы гистидина обладают буферными свойствами в ин­тервале значений рН, близких к физиологическим. Таких белков мало; к ним относится, например, гемоглобин животных, содер­жащий 8 % гистидина, обусловливающего высокую внутриклеточ­ную буферность в эритроцитах, поддерживая рН крови на посто­янном уровне.

Суммарный заряд белковой молекулы определяется соотноше­нием в ней кислотных и основных радикалов аминокислот и вели­чиной их рК. Если в белке кислые аминокислоты преобладают над основными, то в целом молекула белка электроотрицательна, т. е. находится в форме полианиона; и наоборот, если преобладают основные аминокислоты — в форме поликатиона.

Амфотерный характер белков особенно ярко проявляется при изменении рН белкового раствора. В кислой среде в результате высокой концентрации Н+-ионов идет подавление кислотной диссоциации карбоксильных групп и интенсивное протонирование NH-2, —NH—, имидазольных групп — суммарный заряд бел­ковой молекулы будет положителен; в щелочной среде при избыт­ке ОH-ионов будет наблюдаться обратная картина: интенсивная диссоциация карбоксильных групп и депротонирование основных групп — суммарный заряд отрицателен. Естественно, что каждый белок при каком-то определенном значении рН будет иметь сум­марный электрический заряд, равный нулю; такое состояние бел­ка называется изоэлектрическим состоянием, а величина рН, обус­ловливающая это состояние, называется изоэлектрической точкой (ИЭТ). В этой точке белок не обладает подвижностью в электри­ческом поле; имеет наименьшую растворимость в воде; белковые растворы обладают минимальной устойчивостью и минимальным осмотическим давлением. ИЭТ каждого белка определяется соот­ношением кислых и основных групп, величиной их рК: чем боль­ше это соотношение и ниже величина рК групп, тем ниже ИЭТ белка. У кислых белков ИЭТ < 7, у нейтральных около 7, а у основ­ных > 7; при рН < ИЭТ белок будет находиться в форме поликати­она, при рН > ИЭТ — в форме полианиона, в ИЭТ — в форме ам-фотерного полииона (цвиттер-полииона). ИЭТ большинства бел­ков клеток животных, растений, микроорганизмов лежит в пределах 5,5—6,0, а внутриклеточная величина рН находится в пределах 7,0—7,2 (физиологическое значение рН). Следовательно, клеточ­ные белки имеют в общем отрицательный заряд, который уравно­вешивается неорганическими катионами.

Поскольку каждый белок в водных или буферных растворах имеет свой суммарный заряд определенной величины, это свой­ство белков нашло широкое применение для их разделения мето­дом электрофореза. Он основан на передвижении заряженной ча­стицы в электрическом поле. Движение частицы происходит в жидкой среде, которая удерживается инертным твердым носите­лем, например полоской бумаги, гелевой пленкой из крахмала, опарой, полиакриламидами, декстраном, ацетатом целлюлозы, что позволяет существенно снизить диффузию фракционируемых белков в отличие от электрофореза в водной среде. Жидкость же служит проводящей средой для электрического поля, когда к ней приложено внешнее напряжение. Подвижность заряженной мо­лекулы в электрическом поле называется электрофоретической подвижностью.

В разделении белков наибольшее распространение получил электрофорез в полиакриламидном геле (ПААГ), который при­меняется для разделения, очистки, оценки чистоты и определе­ния молекулярной массы. Гель полиакриламидной матрицы в виде однородного тонкого слоя (а не гранул) можно поместить между двумя пластмассовыми пластинками или же заполнить этим гелем трубочки. Структура полиакриламида сшита попереч­ными связями, благодаря чему этот материал имеет развитую по­ристость.

Коллоидные свойства белков

Водные растворы белков — это устойчивые системы, по этому свойству их можно отнести к истинным молеку­лярным растворам. Однако высокая молекулярная масса белков придает им коллоидный характер.

Как правило, диаметр белковых глобул превышает 0,001 мкм. Молекулы белков не способны диффундировать через полупроницаемые мембра­ны —целло­фан. На этом явлении основана очистка белков от низкомолеку­лярных примесей методом диализа, очистка и концентрирование белков методом ультрафильтрации. При диализе целлофановый мешочек с раствором белка помещают в сосуд с проточной водой. Внешние стенки мешочка омываются водой. Низкомолекулярные вещества диффундируют через мембрану и удаляются вместе с во­дой, а белки остаются. При ультрафильтрации мембрана действует как молекулярный фильтр.

Биологические мембраны живых клеток также непроницаемы для белков. Поэтому содержащиеся в протоплазменных структу­рах этих клеток белки создают в них определенное осмотическое давление, называемое коллоидно-осмотическое или онкотическое давление.

Малой скоростью диффузии обладают белки и в водных раство­рах, она зависит не только от моле­кулярной массы, но и от формы белковой молекулы. Глобулярные белки в водных раство­рах имеют более высокий коэффициент диффу­зии, чем фибриллярные.

Характерными признаками коллоидного харак­тера белковых растворов являются их опалесценция, блеск и способность рассеи­вать лучи света (эффект Тиндаля).

Если через кювету с раствором низкомолекулярного вещества, например NaС1, пропустить пучок света, то в кювете он не будет обнаружен, раствор является «оптически пустым». Иная картина будет наблюдаться в кювете с раствором белка, при боковом осве­щении в ней появляется светящаяся полоса или конус. При прохождении света через раствор, содержащий белковые глобулы, радиус которых на­много превышает длину волны света, будет наблюдаться дифрак­ция света: падая на белковую глобулу, свет будет отражаться в раз­личных направлениях.

Светорассеивающая способность белков может быть использо­вана при определении концентрации белковых растворов методами нефелометрии и турбидиметрии, основанных на сравнении интенсивности светорассеивания этих растворов.

Гидратация белков

Гидратация белков - способность белков связывать воду. 100 г. белка связывает 30-35 г. воды.

. Вода связывается ионогенными группами и пептидными группами, расположенными в основном, внутри молекулы белка. Проникновение воды внутрь молекулы белка называется набуханием. Связывание воды ионогенными группами, расположенными на поверхности белковой молекулы, приводит к образованию гидратной оболочки. Коли­чество связанной воды для различных белков составляет около 35 г на 100 г белка. Связанная вода в гидратной оболочке на­ходится в упорядоченном состоянии, что приводит к уменьшению энтропии при гидратации.

1.3.4 Растворимость белков в воде

Многие белки хорошо растворимы в воде, что определяется количеством полярных групп. Растворимость глобулярных молекул лучше, чем фибриллярных белков. Факторы, определяющие стабильность белковых растворов:

- наличие зарядов в белковой молекуле. Одноименные заряды способствуют растворимости белка, т.к. препятствуют соединению молекул и выпадению в осадок.

- Наличие ГИДРАТНОЙ оболочки, препятствующей объединению белковых молекул. Для осаждения белка, его необходимо лишить этих двух факторов устойчивости. Методом осаждения белка является вливание - осаждение белка с помощью нейтральных солей - (NH4)2-S04.

В полунасыщенном растворе (NH4)2-SO4 осаждаются глобулины, а в насыщенном - альбумины.

После удаления осаждающего фактора, белки переходят в растворённое состояние.

Лабильность пространственной структуры белка.

Под действием внешних факторов может происходить нарушение высших уровней организации белковой молекулы (вторичной, третичной, четвертичной структур) при сохранении первичной структуры. При этом белок теряет свои нативные, физико-химические и биологические свойства. Это явление называется денатурацией. Денатурацию вызывают химические факторы ( повышение температуры, давления, механическое воздействие, УЗ, ионизирующее излучение), химические факторы ( кислоты, щелочи, органические растворители -спирт, фенол; соли тяжёлых металлов).n В некоторых случаях возможна РЕНАТУРАЦИЯ, когда денатурирующий фактор действовал кратковременно и нанёс лёгкое разрушение молекуле. В последние годы установлено, что в организме есть белки предотвращающие денатурацию. ШАПЕРОНЫ - класс белков, защищающий в условиях клетки другие белки от денатурации. Они облегчают формирование пространственной конфигурации белков. К ним относятся белки теплового шока или белки стресса.

Предыдущий раздел Раздел верхнего уровня Следующий раздел

– Конец работы –

Эта тема принадлежит разделу:

БИОХИМИЯ. БЕЛКИ. АМИНОКИСЛОТЫ -- СТРУКТУРНЫЕ КОМПОНЕНТЫ БЕЛКОВ

БЕЛКИ АМИНОКИСЛОТЫ СТРУКТУРНЫЕ КОМПОНЕНТЫ БЕЛКОВ... БЕЛКИ... Белки это азотсодержащие высокомолекулярные органические соединения состоящие из аминокислот соединенных в цепи с...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Физико-химические свойства белков

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Биохимия
1. Введение в биохимию 1.1. БЕЛКИ. АМИНОКИСЛОТЫ -- СТРУКТУРНЫЕ КОМПОНЕНТЫ БЕЛКОВ 1.2. Строение и классификация аминокислот 1.3. Уровни структурной организации

IV. Иминокислота
Вместе с тем в настоящее время общепринятой является классификация аминокислот на основе признаков, свойственных R-группам, в частности, их полярности, т.е. способности R-групп взаимодейств

Полярные положительно заряженные.
Аминокислоты, содержащие неполярные R-группы. В боковой цепи этих аминокислот содержатся неполярные, неионные группы. К данному классу относятся алифатическ

К этой группе относят аспарагиновую и глутаминовую аминокислоты, имеющие в боковой цепи дополнительную карбоксильную группу, способную к диссоциации.
Следовательно, боковые группы данных аминокислот – анионы. Ионизированные формы глутаминовой и аспарагиновой кислот называют соответственно глутаматом и аспартатом.

Уровни структурной организации белковых молекул
Пептидные цепи содержат десятки, сотни и тысячи аминокислотных остатков, соединенных прочными пептидными связями. За счет внутримолекулярных взаимодействий белки образуют определенную пространствен

Белковые модули (домены)
Обычно белки, образованные одной полипептидной цепью, представляют собой компактное образование, каждая часть которого не может функционировать и существовать отдельно, сохраняя прежнюю структуру.

Активный центр белка и взаимодействие его с лигандом.
Активный центр белка –это центр связывания белка с лигандом. На поверхности глобулы образуется участок, который может присоединять к себе другие молекулы называемые

Характеристика простых белков.
К простым белкам относят гистоны, протамины, альбумины и глобулины, проламины и глютелины, протеиноиды. Гистоны - тканевые белки многочисленных организмов, связаны с ДНК х

Альбумины и глобулины.
Альбумины (А) и глобулины (Г). А и Г белки, которые есть во всех тканях. Сыворотка крови наиболее богата этими белками. Содержание альбуминов в ней составляет 40-45 г/л, глобулинов 20-30 г

Проламины и глютелины.
Это группа растительных белков, которые содержатся исключительно в клейковине семян злаковых растений, где выполняют роль запасных белков. Характерной особенностью проламинов является то, что они н

Протеиноиды.
Белки опорных тканей ( костей, хрящей, сухожилий, связок ), кератины - белки волос, рогов, копыт, коллагены - белки соединительной ткани, эластин - белок эластических волокон. Все эти белк

Гемоглобин (Нв).
Гемоглобин имеет четвертичную структуру, молекулярная масса его 66-68 тыс.Да. Как следует из названия Нв представляет собой соединение гема с белком глобином. Это олигомерный белок, состоящий из 4

Типы гемоглобинов.
Гемоглобины могут различаться по белковой части. Различают физиологические и аномальные типы гемоглобинов. Физиологические типы образуются на разных этапах нормальног

ПРОТЕОГЛИКАНЫ
ГП - это сложные белки, содержащие олигосахаридные (гликановые) цепи, ковалентно связанные с белковой основой. К этой группе химических соединений относятся многие белки внешней поверхности цитопла

Участвуют в процессе свертывания крови.
Протромбин, фибриноген – являются белками свертывающей системы крови.   ПРОТЕОГЛИКАНЫ. Это углевод-белковые комплексы, углеводный компонент кото

Высшие жирные кислоты
С17 Н35 СООН Предельная Стеариновая С15 Н31 СООН Пальмитиновая

Свободные липопротеины.
Содержатся в плазме крови, все они имеют разную плотность (от 0,92 до 1,21 кг/л) благодаря липидному компоненту. В крови человека присутствуют несколько фракций ЛП, отличающихс

Структурные липопротеины ( протеолипиды ).
Они входят в состав биологических мембран и растворяются в неполярных растворителях (хлороформ, метанол). Причина такого поведения протеолипидов в том, что белок составляет сердцевину их молекулы,

НУКЛЕОПРОТЕИНЫ
Нуклепротеины – это сложные белки, небелковая часть которых представлена нуклеиновыми кислотами. Поскольку нуклеиновые кислоты бывают двух типов, нуклеопротеины делятся по составу на 2 группы: рибо

Номенклатура наиболее распространенных нуклеотидов.
РИБОНУКЛЕОЗИДМОНОФОСФАТЫ: 1. Аденозинмонофосфат ( АМФ ), адениловая кислота. 2. Гуанозинмонофосфат ( ГМФ ), гуаниловая кислота. 3. Цитидинмонофосфат ( ЦМФ ), цитид

Структура нуклеиновых кислот.
Первичные структуры РНК и ДНК построены однотипно, они представляют собой линейные полимеры – полинуклеотиды, состоящие из мононуклеотидов, соединенных 3',5' – фосфодиэфирными связями. При

Вторичная структура ДНК.
Особенностью нуклеотидного состава ДНК является то, что число адениловых нуклеотидов равно числу цитидиловых: А=Т, Г=Ц, следовательно, А+Г=Т+Ц, т.е. число пуриновых нуклеотидов равно числу пиримиди

Вторичная структура РНК.
Молекулы РНК построены из одной полинуклеотидной цепи. Отдельные участки цепи РНК образуют спирализованные петли "шпильки", за счет водородных связей между комплементарными азотистыми осн

Основные типы РНК.
По особенностям структуры и функциям различают 3 типа рибонуклеиновых кислот – транспортные РНК (тРНК), матричные РНК (мРНК) и рибосомальные РНК (рРНК). Они различаются по первичной структуре, моле

Третичная структура нуклеиновых кислот.
Одноцепочные РНК характеризуются компактной и упорядоченной третичной структурой, возникающей путем взаимодействия спирализованных участков вторичной структуры. Третичная структура РНК стабилизируе

ФОСФОПРОТЕИНЫ.
Фосфопротеины – это сложные белки, содержащие в своем составе в качестве простетической части фосфорную кислоту. Фосфорная кислота связана сложно – эфирной связью с белковой частью молекулы через г

Производные моносахаридов
Модификация имеющихся групп или введение новых заместителей в молекулу моносахаридов дает различные их производные. Они используются для построения разнообразных полимерных углеводов. Некоторые из

Олигосахариды
К олигосахаридам относятся сложные углеводы, имеющие от 2 до 10 звеньев моносахаридов соединенных гликозидными связями. Среди наиболее распространенных олигосахаридов следует отметить дисахариды –

Гомополисахариды (ПС).
Структурные различия между полисахаридами определяются: - строением моносахаридов, составляющих цепь - типом гликозидных связей, соединяющих мономеры в цепь - последовате

Гетерополисахариды
Гликозамингликаны – линейные отрицательно заряженные гетерополисахариды. Раньше их называли мукополисахаридами, так как они обнаруживались в слизистых секретах (мукоза) и придавали этим секретам вя

Жирные кислоты и ацилглицеролы.
ЖИРНЫЕ КИСЛОТЫ. Жирные кислоты – структурные компоненты различных липидов. Жирные кислоты липидов человека представляют собой углеводородную неразветвленную цепь на одном конце которой нах

ФОСФОЛИПИДЫ
Фосфолипиды – группа липидов, содержащих в своем составе остаток фосфорной кислоты. Фосфолипиды делят на глицерофосфолипиды, основу которых составляет глицерол и сфингофосфолипиды – производные ами

Сфинголипиды
Сфинголипиды – производные аминоспирта сфингозина. Аминоспирт сфингозинсостоит из 18 атомов углерода, содержит гидроксильные группы и аминогруппу.Примером сфинголипидов служат церамиды и сфингомиел

Стероиды
Стероиды – производныециклопентанпергидрофенантрена. В организме основной стероид – холестерол,остальные стероиды – его производные. Холестерол входит в состав мембран ивлияет на структуру бислоя,

Витамины
ВИТАМИНЫ В середине XIX века сложились представления о пищевой ценности белков, жиров, углеводов, минеральных веществ и воды. Однако экспериментальные исследования клинические наблюдения с

Рацион взрослого человека
Завтрак яичница (2 яйца, слив.масло 10г) творог (100г) бутерброд (хлеб 100г, слив. масло 10г) кофе (сахар 20г) Содержание витаминов: С –

Жирорастворимые витамины
Жирорастворимые витамины. Витамин А химическое название - ретинол, клиническое название - антиксерофтальмический. Ретинол состоит из кольца бета-ионона и боковой цепи содержащий два остатк

Водорастворимые витамины
Водорастворимые витамины Витамин С. Клиническое название этого витамина – антискорбутный, а химическое название – аскорбиновая кислота. Витамин С не содержит карбоксильной группы,

ВИТАМИНОПОДОБНЫЕ ВЕЩЕСТВА.
Синтезируются в организме, но в недостаточном количестве. ПАБК (ПАРААМИНОБЕНЗОЙНАЯ К-ТА) 1.Участвует в образовании ФОЛИЕВОИ кислоты, 2.Участвует в образовании ряда фермен

Ферменты и неорганические катализаторы
ПОНЯТИЕ О ФЕРМЕНТАХ. Ферменты - это биологические катализаторы в основном белковой природы. Роль ферментов в организме огромна. В каждой клетке организма находится до 10000 молеку

Строение ферментов
Ферменты, являясь белками, повторяют все особенности структуры и состава белков (состоят из аминокислот, имеют 4 уровня структурной организации), физико-химические свойства белков. Ферменты, как и

Коферменты
КОФЕРМЕНТЫ Коферменты – небелковая часть сложных ферментов. Их делят на две группы: 1.Витаминные. 2.Невитаминные. Витаминные коферменты: 1.Тиаминовые ко

Свойства ферментов
СВОЙСТВА ФЕРМЕНТОВ. 1 .Высокая каталитическая активность. 2.Ферменты, являясь белками, проявляют термолабильные свойства - чувствительность к изменению температуры. При п

Специфичность действия ферментов.
Субстратная специфичность 1. Абсолютная специфичность. Ей обладают ферменты, которые действуют только на 1 субстрат и не действуют на другие субстраты. Уреаза катализирует гидроли

Номенклатура ферментов
Номенклатура ферментов. 1. Тривиальная номенклатура. Пример: пепсин, трипсин. 2. Рабочая номенклатура: название S + тип превращения + окончание «аза». пример: ла

Синтетазы
   

Механизм действия ферментов
Согласно современным представлениям при взаимодействии фермента с субстратом условно можно выделить 3 стадии: 1 стадия характеризуется диффузией субстрата к фермен

Кислотно-основный катализ.
В активном центре фермента содержатся группы кислотного и основного типа. Группы кислотного типа отщепляют Н+ и имеют отрицательный заряд. Группы основного типа присоединяют Н+ и имеют поло

А). Гипотеза Фишера.
Согласно ей имеется строгое стерическое соответствие субстрата и активного центра фермента. По Фишеру, фермент - это жёсткая структура, а субстрат является как бы слепком его активного цент

Обмен углеводов
ОБМЕН УГЛЕВОДОВ 1. Основные углеводы животного организма, их биологическая роль. 2. Превращение углеводов в органах пищеварительной системы. 3. Биосинтез и распад

Биологическая роль углеводов
БИОЛОГИЧЕСКАЯ РОЛЬ УГЛЕВОДОВ: 1. ЭНЕРГЕТИЧЕСКАЯ. При окислении1 г углеводов до конечных продуктов (СО2 и Н2О) выделяется 4,1-ккал энергии. На долю углеводов приходится около 60-70

Превращение углеводов в пищеварительном тракте
ПРЕВРАЩЕНИЕ УГЛЕВОДОВ В ПИЩЕВАРИТЕЛЬНОМ ТРАКТЕ Основными углеводами пищи для организма человека являются: крахмал, гликоген, сахароза, лактоза. Поступивший с пищей крахма

Биосинтез и распад гликогена
БИОСИНТЕЗ И РАСПАД ГЛИКОГЕНА В ТКАНЯХ. ГЛИКОГЕНОВЫЕ БОЛЕЗНИ. Было установлено, что гликоген может синтезироваться практически во всех органах и тканях. Однако наибольшая его конце

Анаэробный гликолиз
В зависимости от функционального состояния организма, клетки органов и тканей могут находиться как в условиях достаточного снабжения кислородом, так и испытывать его недостаток, то

Аэробный гликолиз (гексозодифосфатный путь)
ГЕКСОЗОДИФОСФАТНЫЙ ПУТЬ. Это классический путь аэробного катаболизма углеводов в тканях протекает в цитоплазме до стадии образования пирувата и завершается в митохондриях с образование кон

Аэробный гликолиз (гексозодифосфатный путь)
ГЕКСОЗОДИФОСФАТНЫЙ ПУТЬ. Это классический путь аэробного катаболизма углеводов в тканях протекает в цитоплазме до стадии образования пирувата и завершается в митохондриях с образование кон

Гексозомонофосфатный путь
ГЕКСОЗОМОНОФОСФАТНЫЙ ПУТЬ ПРЕВРАЩЕНИЯ ГЛЮКОЗЫ В ТКАНЯХ, ХИМИЗМ РЕАКЦИЙ. Окисление глюкозы по этому пути протекает в цитоплазме клеток и представлено двумя последовательными ветвям

Глюконеогенез
ГЛЮКОНЕОГЕНЕЗ Основными источниками глюкозы для организма человека являются: 1. углеводы пищи; 2. гликоген тканей; 3. глюконеогенез. ГЛЮКОНЕОГЕНЕЗ - это

Основные липиды организма человека их биологическая роль.
ЛИПИДАМИ называются сложные органические вещества биологической природы нерастворимые в воде, но растворимые в органических растворителях. ЛИПИДЫ являются основным продуктом питания. Они п

Переваривание липидов, ресинтез жира
Переваривание липидов. Поступающие с пищей ЛИПИДЫ в ротовой полости подвергаются только механической переработке. ЛИПОЛИТИЧЕСКИЕ ферменты в ротовой полости не образуются. Переваривание жир

Липопротеины крови
ЛИПИДЫ являются нерастворимыми в воде соединениями, поэтому для их переноса кровью необходимы специальные переносчики, которые растворимы в воде. Такими транспортными формами являются ЛИПОПРОТЕИНЫ.

Окисление высших жирных кислот
Жировая ткань, состоящая из адипозоцитов, выполняет специфическую роль в липидном обмене. Около 65% массы жировой ткани приходится на долю отложенных в ней триацилглицеролов (ТАГ) - они представляю

Биосинтез ВЖК в тканях
Биосинтез ВЖК происходит в эндоплазматической сети клеток. Заменимые ВЖК (все предельные и непредельные, имеющих одну двойную связь) синтезируются в клетках из АЦЁТИЛ-КоА. Условиями для би

Обмен холестерина
Обмен холестерина. Холестерин является предшественником в синтезе стероидов: желчных кислот, стероидных гормонов, витамина D3.Холестерин является обязательным структурным компон

Переваривание белков
Переваривание белков в пищеварительном тракте Пищевые белки подвергаются гидролитическому расщеплению под действием ПРОТЕОЛИТИЧЕСКИХ ФЕРМЕНТОВ (класс – гидролазы, подкласс - пептидазы).

Гниение аминокислот, обезвреживание продуктов гниения
ГНИЕНИЕ АМИНОКИСЛОТ Аминокислоты, которые не подверглись всасыванию, поступают в толстую кишку, где подвергаются гниению. ГНИЕНИЕ АМИНОКИСЛОТ - это процесс распада аминокислот под действие

Метаболизм аминокислот
Метаболизм аминокислот Источниками аминокислот в клетке являются: 1. белки пищи после их гидролиза в органах пищеварения; 2. синтез заменимых аминокислот;

Пути обезвреживания аммиака
Аммиак образуется из аминокислот при распаде других азотсодержащих соединений (биогенных аминов, НУКЛЕОТИДОВ). Значительная часть аммиака образуется в толстой кишке при гниении. Он всасывается в кр

Регуляция обмена веществ
СИГНАЛЬНЫЕ МОЛЕКУЛЫ. Основные задачи регуляции метаболизма и клеточных функций: 1. внутриклеточное и межклеточное согласование обменных процессов; 2. исключение «холостых

Гормоны гипоталамуса
ГОРМОНЫ ГИПОТАЛАМУСА ГИПОТАЛАМУС является компонентом и своеобразным «выходным каналом» лимбической системы. Это отдел промежуточного мозга, контролирующий различные параметры гом

ГОРМОНЫ ГИПОФИЗА
ГОРМОНЫ ГИПОФИЗА   В гипофизе выделяют переднюю (аденогипофиз) и заднюю доли (нейрогипофиз).   Гормоны аденогипофиза можно разделить на 3 группы в зави

ГОРМОНЫ ГИПОФИЗА
ГОРМОНЫ ГИПОФИЗА   В гипофизе выделяют переднюю (аденогипофиз) и заднюю доли (нейрогипофиз).   Гормоны аденогипофиза можно разделить на 3 группы в зави

Биосинтез йодтиронинов
Синтез йодтиронинов происходит в составе белка – тиреоглобулина, который находится в фолликулах щитовидной железы. Тиреоглобулин представляет собой гликопротеин, содержащий 115 остатков тирозина. П

Обмен липидов
В печени жировой ткани гормоны стимулируют липолиз. Указанные эффекты на обмен углеводов и липидов связывают с повышением чувствительности клеток к действию адреналина под влиянием тиреоидных гормо

Гипосекреция
В детском возрасте снижение секреции приводит к задержке физического и умственного развития (кретинизм). У взрослых тяжелым проявлением недостатка гормонов щитовидной железы является миксе

Гиперсекреция
Диффузный токсический зоб (базедова болезнь) наиболее распространенное заболевание, сопровождающееся повышенной продукцией йодтиронинов. При этом заболевании размеры щитовидной железы увеличены и р

ГОРМОНЫ ПАРАЩИТОВИДНЫХ ЖЕЛЕЗ
Паратгормон синтезируется в паращитовидных железах и состоит из 84 аминокислотных остатков. Гормон хранится в секреторных гранулах. Секреция ПТГ регулируется уровнем кальция в крови: при сни

Гормоны половых желез
Гормоны половых желез   По химической природе представляют собой стероиды. Выделяют: 1. Андрогены; 2. Эстрогены; 3. Прогестины.  

Гормоны надпочечников
Гормоны надпочечников Надпочечники – железы внутренней секреции, в которых выделяют корковое и мозговое вещество. В корковом слое синтезируется гормоны стероидной природы, в мозгово

Гормоны поджелудочной железы
Гормоны поджелудочной железы Функции поджелудочной железы: · экзокринная; · эндокринная. Экзокринная функция заключается в синтезе и секреции пищеварительных фер

Экзаменационные вопросы
ФАРМАЦЕВТИЧЕСКИЙ ФАКУЛЬТЕТ (ЗАОЧНОЕ ОТДЕЛЕНИЕ) Экзаменационные вопросы по биологической химии для студентов 3 курса (6 семестр) 1. Биохимия, ее задачи. Связь биохимии с ф

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги