рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Второй закон термодинамики. Энтропия

Второй закон термодинамики. Энтропия - раздел Химия, ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ Энтропия, Обозначаемая Буквой S - Экстенсивное Свойство Системы, Была Введена...

Энтропия, обозначаемая буквой S - экстенсивное свойство системы, была введена Клаузиусом, при анализе материала по тепловым двигателям, первоначально в виде так называемой "приведенной теплоты" − то есть математически :

 

, (1.14)

 

где Q - количество тепла, которым обменивается система с окружающей средой при совершении обратимого процесса.

Исходя из этой формулы, легко видеть размерность энтропии: [ Дж/К ], а если мы рассматриваем мольную величину, то [ Дж/(моль К) ]. Повторим, что значит экстенсивная величина. Это значит, что энтропия всей системы может быть найдена суммированием значений энтропий всех составных частей системы:

 

. (1.15)

 

Клаузиусом было доказано, что несмотря на то, что теплота зависит от пути процесса, величина отношения теплоты к абсолютной температуре, не зависит от пути процесса, то есть является функцией состояния. Эта функция состояния была названия энтропией. Бесконечно малое изменение энтропии является полным дифференциалом . Конечное же изменение энтропии в результате какого-то процесса может быть найдено, как

 

. (1.16)

 

Совмещая выражение (3.3 ) с определительным для энтропии выражением, записанным для бесконечно малых величин

 

. (1.17)

 

Запишем общую формулу для расчета изменения энтропии в ходе процесса:

 

. (1.18)

 

Формулы (1.16), (1.17), (1.18) − основные формулы для расчета энтропии. Раскрыв смысл в каждом конкретном случае можно рассчитать и .

Формула (1.18) в то же время является математическим выражением классической формулировки второго закона термодинамики, который гласит, что для всех обратимых изменений в закрытой системе с однородной температурой справедливо соотношение

 

.

 

Для всех необратимых изменений в закрытой системе величина приращения энтропии будет больше, чем изменение приведенной теплоты, то есть

 

(1.19)

 

Эти соотношения можно записать в виде неравенства Клаузиуса, которое связывает изменение энтропии с количеством теплоты , которым система обменивается с окружением при температуре :

 

. (1.20)

 

Причем знак равенства имеет место при обратимых, а неравенства – при необратимых процессах.

Источниками необратимых процессов могут быть: диффузия, расширение системы при существовании разности давлений между ней и окружающей средой, теплопередача при разных температурах, самопроизвольные химические реакции в объеме системы и другие диссипативные процессы, связанные с необратимым превращением работы в теплоту. Неравенство (1.20) выполняется независимо от причины возникновения необратимого процесса, в итоге наблюдается выделение внутри системы дополнительного количества теплоты. Р. Клаузиус назвал эту теплоту, вызванную неравновесными процессами, некомпенсированной теплотой (обозначим эту величину ).

Известно, что если процесс осуществляется равновесно и обратимо, то совершаемая работа – максимальна. Если процесс осуществляется необратимо, то работа оказывается меньше, чем в обратимом процессе, часть ее как бы «теряется». В соответствии с первым законом термодинамики «потерянная» работа должна проявиться в другой форме, например, в форме некомпенсированной теплоты, которая всегда неотрицательна: больше нуля в необратимых, равна нулю в обратимых процессах.

 

(1.21)

 

При изотермических процессах неравенство (1.20) можно записать в виде равенств:

 

; (1.22)

, (1.23)

 

где - изменение энтропии, вызванное равновесным теплообменом с окружающей средой (индекс « e » от лат. external- внешний);

- рост энтропии из-за необратимых процессов внутри системы (индекс « i » от лат. internal – внутренний).

Величину энтропии данной системы нельзя измерить непосредственно на опыте, но ее можно вычислить, пользуясь формулой (1.16)

Эта формула позволяет найти не абсолютную величину энтропии, а разности энтропий в двух состояниях системы, т.е. изменение энтропии при переходе системы из состояния 1 в состояние 2.

Термин "некомпенсированная теплота" не совсем удачен. Теплота это энергия, которой система обменивается с внешним миром и следовательно, которая проходит через поверхность ограничивающую систему от внешнего мира. А та теплота, которую Клаузиус назвал некомпенсированной, возникает вследствие протекания процессов внутри самой системы.

Прежде чем мы запишем современную формулировку второго закона термодинамики, отметим, что этот закон, также как и первый закон постулативный. Он не выведен теоретически, а просто постулирован на основании осмысления огромного экспериментального материала, накопленного за человеческую историю. Правильность его подтверждается соответствием следствий из практики. И пока нет таких экспериментов, которые бы его опровергли. Хотя попыток предпринималось очень много.

Запишем формулировку второго закона термодинамики:

 

у всякой изолированной системы, находящейся в неравновесном состоянии, энтропия с течением времени возрастает, ее рост продолжается до тех пор, пока система не достигнет равновесного состояния.

Это и есть второй закон термодинамики или как его еще называют закон возрастания энтропии. Математически его можно записать в форме:

где знак неравенства относится к неравновесному состоянию, а знак равенства к равновесному.


– Конец работы –

Эта тема принадлежит разделу:

ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ

Федеральное государственное бюджетное образовательное учреждение... высшего профессионального образования... Тихоокеанский государственный технический университет...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Второй закон термодинамики. Энтропия

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

МЕТАЛЛУРГИЧЕСКИХ ПРОЦЕССОВ
  Допущено учебно-методическим объединением по образованию в области металлургии в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению «Металл

Первый закон термодинамики. Внутренняя энергия. Энтальпия
Рассматриваемые нами системы состоят из большого количества частиц (атомов, молекул, ионов), находящихся в непрерывном движении. В соответствии с формой движения частиц различают поступательную и в

Первый закон термодинамики
Первый закон термодинамики – это фактически закон сохранения энергии. Он утверждает, что Существует аддитивная функция состояния термодинамической системы, называемая внутренней энергией U

Парциальное мольное свойство компонента раствора
Условимся обозначать символом любое полное экстенсивное свойство чистого вещества

Определение поверхностного натяжения
  Жидкие вещества обладают хорошо известным характерным свойством сокращать свою поверхность, благодаря чему мелкие капли расплавленных металлов приобретают сферическую форму. Это явл

Методы измерения поверхностного натяжения
Существует значительное число методов измерения поверхностного натяжения легкоподвижных поверхностей раздела фаз жидкость - газ и жидкость - жидкость. Эти методы разделяются на: 1) статические; 2)

Определение проводимости расплавов материалов
К числу важнейших физических свойств металлических распла­вов относится их электропроводность. Это свойство, как и вязкость, относится к структурно-чувствительным характеристикам, поэтому его изуче

Методы измерения проводимости расплавов металлов и сплавов
Методы измерения можно разделить на две группы: контактные и бесконтактные измерения. Контактный метод связан с погружением электродов в жидкий металл, находящийся в электроизмерительной я

Методы измерения электрической проводимости расплавленных шлаков
Как уже отмечалось, для измерения электрической про­водимости оксидных расплавов преимущественно приме­няют контактные методы. Эти методы предполагают из­мерение электрического сопротивления распла

Бесконтактные методы измерения электрической проводимости металлургических расплавов
Из бесконтактных методов измерения электрической про­водимости жидких металлов наибольшее распространение получили метод вращающегося магнитного поля, в которое помещается исследуемый провод

Определение плотности расплавов
Плотность d, одна из основных физических характерис­тик расплавов, непосредственно связана со многими дру­гими (поверхностным натяжением, σ, сжимаемостью χ и теплоемкостью Сv, с динамичес

Методы определения плотности расплавов
В методе используется соотношение для массы тела, по­груженного в жидкость. Под действием выталкивающей силы масса тела уменьшается на величину массы вытес­ненной жидкости ∆М:  

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Рыжонков Д.И. и др. Теория металлургических процессов. М.: Металлургия, 1989. – 391 с. 2. Арсентьев П.П., Яковлев В.В., Крашенинников М.Г., Пронин Л.А., Филиппов Е.С. Физико-Химические

Термодинамический анализ
Результатом физико-химических процессов и фазовых превращений в металлах и сплавах при разных видах обработки являются исходные материалы, полученные на разных стадиях металлургических и литейных п

Алюмотермия
К пирометаллургическим способам относится металлотермия. Металлотермия (от металлы и греч . therme - жар, тепло), металлургические процессы, основанные на восстановлении металлов из их соединений (

Библиографический список
1. Белай Г.Е. Организация металлургического эксперимента. Москва. «Металлургия». 1993г. 2. Общая химическая технология. С. 125-126 3. Общая металлургия 4. Металлургия ред

Основные теоретические положения
Одним из приоритетных направлений современного материаловедения является разработка научных и технологических основ получения металлических порошков и их тугоплавких соединений – основного сырья по

Термодинамическая оценка реакций получения вольфрама и молибдена
Основой металлургических процессов получения металлов являются окислительно-восстановительные реакции, которые в общем виде представляют уравнением р/n MnXm + mM&acut

Порядок выполнения работы
1. Оценить термодинамическую возможность восстановления Mo и W из оксидных фаз. 2. Оценить термодинамическую возможность восстановления Mo и W из оксидных фаз в ионных расплавах.

Основные теоретические положения
Рассмотрим термодинамическую систему, в которой протекает некоторая обобщенная химическая реакция   (3.1) &

Обработка результатов эксперимента.
Полученные результаты оформляют в виде таблицы 3.1 и представляют графически в координатах и

Поверхностное натяжение
Известно, что поверхность расплавленных металлов, как и других жидкостей, стремится к самопроизвольному сокращению. Этот факт говорит о существовании свободной энергии поверхности, т. е. о необходи

Поверхностное натяжение и смачиваемость
  Термодинамика рассматривает поверхностное натяжение как меру изменения свободной энергии системы при изменении ее поверхности:

Методы определения поверхностного натяжения
В литературе выделяют следующие методы определения поверхностного натяжения металлов: метод отрывающейся капли, метод капиллярного поднятия, метод максимального давления, метод висячей капли и др.

Библиографический список
1. П.П. Арсентьев и др. Физико-химические методы исследования металлургических процессов. М.: Металлургия, 1989. 288 с. 2. О.И. Островский и др. Свойства металлических расплавов. М.: Метал

Порядок выполнения работы
Проведение эксперимента начинают с подготовки образца, Для этого вытачивается из заготовки исследуемого материала цилиндр диа­метром 25-30 мм и высотой 80-100 мм. С таким расчетом, чтобы 1/4 объема

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги