рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Вікна та їх основні параметри

Вікна та їх основні параметри - раздел Связь, Вступ до дисципліни проектування цифрової обробки сигналів та зображень. Основні поняття та визначення. Області застосування та основні задачі цифрової обробки сигналів В Гармонійному Аналізі Вікна Використовуються Для Зменшення Небажаних Ефектів...

В гармонійному аналізі вікна використовуються для зменшення небажаних ефектів просочування спектральних складових. Вікна впливають на можливість виявлення, роздільну здатність, динамічний діапазон, ступінь достовірності і легкість реалізованості обчислювальних операцій. Для порівняння характеристики вікон визначаються як їх основні параметри впливають на результати гармонійного аналізу.

Обмежений по смузі сигнал f(t) з перетворенням Фур’є F(ω) можна описати еквідістантною послідовністю відліків f (nT). Ця послідовність визначає періодично продовжений спектр NТ(ω) як його розкладання в ряд Фур’є.

Для машинної обробки в реальному масштабі часу послідовність даних повинна мати кінцеву тривалість, тому суму нескінченного ряду можна апроксимувати кінцевою сумою:

Рівняння (10.1) є перетворенням Фур’є; межі підсумовування тут вибрані задля зручностей, які дає парна симетрія. Рівняння (10.2) є перетворенням Фур’є з опущеною правою точкою, а (10.3) — ДПФ, тобто ряд відліків спектру (10.2). Бажано, щоб при опрацюванні реальних сигналів (для зручності застосування обчислювальних алгоритмів) індекси починалися з нуля. Цього можна добитися, зсовуючи початкову точку на N/2 точок вправо, тобто переходячи від (10.3) до (10.4). Рівняння (10.4) є прямим ДПФ. Оскільки, зсув індексу підсумовування на N/2 впливає лише на фазові кути перетворення, тому задля зручностей, обумовлених симетрією, будемо вважати, що всі вікна мають центр в початковій точці. Проте, треба пам'ятати, що ця зручність є основним джерелом неправильного застосування вікон. При обчисленні ДПФ за допомогою вікон зсув на N/2 точок і пов'язаний з ним фазовий зсув часто не враховують або враховують неправильно. Зокрема, це стається в тих випадках, коли множення на вагову функцію вікна в часовій області замінюється поєднанням спектру сигналу із спектром вікна.

Визначимо точність апроксимації суми нескінченного ряду рівнянням (10.2).

(10.5)

Розглянемо вплив вікна на спектральні оцінки. З рівняння (10.5) видно, що перетворення Fw(ω) – це перетворення добутку, яке згідно з рівнянням (10.6) еквівалентне згортці двох перетворень:

(10.6)

Рівняння (10.6) є ключем до розуміння впливу кінцевої довжини послідовності даних на результати їх обробки. Інтерпретувати його можна двояко, але обидві інтерпретації еквівалентні. Легше всього пояснити це на конкретному прикладі. Візьмемо дискретне прямокутне вікно ω(nT)=1,0. Відомо, що W()це ядро Діріхле , що має вигляд:

(10.7)

Якщо не враховувати член, що характеризує лінійний фазовий зсув (який зміниться через зсув на N/2 точок, необхідного для реалізації обчислювального алгоритму), то один період цього перетворення буде мати форму, показану на рис 10.2

Рис 10.2. Ядро Діріхле для послідовності з N точок

Щодо формули (7.6) можна сказати, що величина Fw(ω) на заданій частоті ω (наприклад, ω = ω0) є сумою всіх спектральних гармонік, заздалегідь зважених спектральним вікном, з центром на частоті ωо (рис 10.3).

Рис 10.3.. Графічна Інтерпретація рівняння (6). Вікно представлене у вигляді спектрального фільтра,

Еквівалентна шумова смуга

З рис. 10.3 видно, що оцінка амплітуди гармонійної компоненти на заданій частоті виявляться зміщеною через наявність широкосмугового шуму, що потрапляє в смугу пропускання вікна. В цьому випадку вікно поводиться як фільтр, потужність сигналу на виході якого пропорційна потужності гармонік вхідного сигналу в смузі його пропускання. Для виявлення гармонійного сигналу необхідно мінімізувати накопичений шум. Цього можна досягти за допомогою вузько смугового вікна. Зручною мірою ширини смуги пропускання вікна є його еквівалентна шумова смуга (ЕШС). ЕШС вікна - це ширина смуги пропускання прямокутного фільтра з тим же максимальним посиленням його потужності, який накопичує ту ж потужність шуму, що і дане вікно (рис. 10.4).

Рис. 10.4. Еквівалентна шумова смуга вікна

Накопичена вікном потужність шуму визначається виразом:

Потужність шуму рівна

(10.8)

де N0 - потужність шуму в одиничній смузі частот. Згідно теореми Парсеваля, величину (10.8) можна обчислити так:

(10.9)

Максимальне підсилення по потужності відповідає частоті ; воно називається посиленням по потужності на нульовій частоті і визначається виразами:

Оскільки максимальне підсилення сигналу W(0)=, максимальне посилення за потужністю W2(0) = , ЕШС вікна, нормована на величину N0/T- потужність шуму на бін (одиничний часовий інтервал), може бути записана у вигляді:

(10.10)

Підсилення і втрати перетворення

З ЕШС вікна тісно зв'язані поняття посилення перетворення (ПП) і втрат перетворення (ВП) при обчисленні ДПФ за допомогою вікон. Оскільки, ДПФ можна розглядати як результат пропускання сигналу через набір погоджених фільтрів, кожен з яких налаштований на одну з гармонік комплексної синусоїдальної послідовності базисної множини, можна проаналізувати підсилення перетворення (зване також когерентним підсиленням) фільтра і втрати перетворення, викликані тим, що вікно згладжує, тобто зводить до нуля, величини відліків, розташованих поблизу його меж. Хай вхідна послідовність відліків задана виразом:

(10.11)

Де - послідовність відліків білого шуму з дисперсією . Тоді становляча сигналу в спектрі, обчисленому за допомогою вікна (тобто вихід погодженого фільтра), буде рівна:

 

(10.12)

З (10.12) видно, що у відсутність шуму спектральна складова пропорційна вхідній амплітуді А. Таке ж буде і математичне очікування цієї складової за наявності шуму. Коефіцієнт пропорційності рівний сумі всіх відліків дискретного вікна, а ця сума є не що інше, як посилення вікна для постійного сигналу. Для прямокутного вікна цей коефіцієнт рівний N – числу відліків у вікні. Посилення будь-якого іншого вікна менше, оскільки вагова функція поблизу меж вікна плавно спадає до нуля. Зменшення коефіцієнта пропорційності характеризує помилку (зсув) оцінок амплітуд спектральних складових.

Некогерентна складова зваженого, тобто виконаного за допомогою вікна перетворення, обчислюється за формулою:

(10.13)

а некогерентна потужність (середньоквадратичне значення цієї складової) визначається виразом:

(10.14)

де Е{ } - оператор математичного очікування. Зауважимо, що некогерентне посилення за потужністю рівне сумі квадратів відліків вагової функції, а когерентне — квадрату суми цих відліків.

ПП визначається як частка відношення сигнал/шум на виході і на вході:

(10.15)

Тобто, ПП — це величина, зворотна нормованій ЕШС вікна.

Кореляція ділянок, що перекриваються

При використанні алгоритму ШПФ для обробки певної послідовності, цю послідовність заздалегідь ділять на декілька послідовностей по N відліків кожна, при цьому N вибирається так, щоб забезпечити необхідну спектральну роздільну здатність. Спектральна роздільна здатність ШПФ визначається формулою (10.16), де - спектральна роздільна здатність, fs – частота дискретизації, вибрана за критерієм Найквіста, і β - коефіцієнт, що характеризує збільшення ширини смуги для вибраного вікна. Відзначимо, що - це якнайкраща роздільна здатність, досяжна при ШПФ. Коефіцієнт β звичайно вибирається рівним ЕШС вікна в бінах.

(10.16)

Якщо вікно і ШПФ впливають на ділянки послідовності (рис. 7.4), що не перекриваються, то значна частина даних просто ігнорується, оскільки поблизу меж вікна значення його відліків близькі до нуля. Так, наприклад, якщо перетворення використовується для виявлення коротких вузькополосних сигналів, то при аналізі ділянок, що не перекриваються, поява сигналу може виявитися просто непоміченою. Для цього достатньо, щоб сигнал з'явився поблизу межі будь-якого з інтервалів. Щоб уникнути таких втрат даних, перетворенню звичайно піддають ділянки послідовності, що перекриваються (див. рис. 10.5). Ступінь перекриття в більшості випадків вибирається рівній 50 або 75%. Розбиття сигналу на ділянки, що перекриваються, звичайно, збільшує загальний об'єм обчислень, проте результати, що досягаються з його допомогою, цілком це виправдовують.

Рис 10.5. Розбиття послідовностей на інтервали, що перекриваються та не перекриваються.

Паразитна амплітудна модуляція спектру

Важливим чинником, що впливає на виявлення слабих сигналів, є паразитна амплітудна модуляція спектру (scalloping loss), або ефект ''частоколу" (picket-fence effect). Раніше розглядалось виконуване за допомогою вікна ДПФ як результат пропускання сигналу через набір погоджених фільтрів і аналізували обумовлені специфічними властивостями вікна підсилення і втрати для тонів, співпадаючих з базисними векторами. Базисні вектори – це частоти, кратні частоті fs/N, де fs – частота відліків. Ці частоти не що інше, як точки відліків спектру, їх звичайно називають точками виходів, частотами гармонік або бінами ДПФ. Визначимо, які будуть додаткові втрати при опрацюванні сигналу, частота якого лежить посередині між частотами сусідніх бінів (тобто сигналу з частотою (k+1/2)fs/N)?

В (10.12) замінивши ωк на ωк+1/2 одержуємо, що підсилення вікна для частоти, зсунутої на 0.5 біна, рівне:

(10.17)

Максимальні втрати перетворення

Максимальні втрати перетворення (ВП) можна визначити як суму максимальних втрат через паразитну AM спектру для даного вікна (в дБ ) і втрат перетворення, обумовлених формою цього вікна. Введений параметр характеризує зменшення співвідношення виходу сигнал/шум в результаті дії вікна при якнайгіршому розташуванні частоти сигналу. Його величина впливає на мінімальну інтенсивність частоти при якій вона ще може бути знайдена в широкосмуговому шумі. Рівень максимальних втрат лежить між 3.0 і 4.3 дБ. Вікна, для яких максимальні ВП перевищують 3.8 дБ, абсолютно незадовільні і їх не слід застосовувати.

Мінімальна допустима смуга частот

На рис.10.6 наведений ще один критерій, який повинен використовуватися при виборі оптимальних вікон. Оскільки вікно додає спектральній лінії деяку ефективну ширину, треба знати, при якій мінімальній відстані між двома спектральними лініями рівної інтенсивності головні пелюстки цих ліній ще можуть бути розділені незалежно від положення ліній щодо бінів ДПФ. Класичний критерій такого розділу – ширина вікна між точками, в яких потужність головного пелюстка спадає наполовину (ширина вікна по рівню 3.0 дБ). Цей критерій відображає той факт, що два головні пелюстки рівної інтенсивності, віддалені один від одного по частоті менш ніж на ширину вікна по рівню 3.0 дБ, будуть мати один загальний спектральний пік і не будуть розділятися як дві окремі лінії.

Рис. 10.6. Спектральний дозвіл двох близько розташованих ядер.

Проте цей критерій несумісний з когерентним підсумовуванням, використовуваним в ДПФ.

Якщо в когерентне підсумовування вносять внесок двоє ядер, їх сума в точці перетину (номінально посередині між ними) повинна бути менше ніж індивідуальні найвищі точки, якщо ці найвищі точки розділені. Таким чином, в точках перетину ядер посилення від кожного ядра повинне перевищувати 0.5, тобто відстань між списами повинна перевищувати ширину вікна по рівню 6.0 дБ.

– Конец работы –

Эта тема принадлежит разделу:

Вступ до дисципліни проектування цифрової обробки сигналів та зображень. Основні поняття та визначення. Області застосування та основні задачі цифрової обробки сигналів

Тема вступ до дисципліни проектування цифрової обробки сигналів та зображень основні поняття та..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Вікна та їх основні параметри

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основні поняття та визначення. Основні характеристики сигналів
Сигнал (в теории информации и связи) — материальный носитель информации, используемый для передачи сообщений в системе связи. Сигналом может быть люб

Природа сигналів. За своєю природою, сигнали можуть бути випадкові або детерміновані.
До детермінованих відносять сигнали, значення яких у будь-який момент часу або в довільній точці простору є апріорно відомими або можуть бути досить точно визначені (обчислені) за відомою чи передб

Аналогові та цифрові сигнали.
До основних типів відносять аналоговий, дискретний і цифровий сигнали. Аналоговим називають сигнал, неперервний у часі і значеннях. Такий сигнал описується неперервною або кусочно н

Основні типи сигналів
Фінітні сигнали. Фінітним називається сигнал, який визначений лише на деякому часовому проміжку і не існує поза ним, тобто при t>T, амплітуда сигналу рівна нулю. Пер

Елементарні сигнали, що найчастіше використовуються ЦОС
Всі сигнали ми будемо розглядати в аналоговому та неперервному варіантах. 1. Неперервний випадок

Властивості спектрів дискретних сигналів
1. Неперервність. 2. Періодичність.. 3. Спектр дійсного сигналу. Якщо - д

Режим реального часу
Основними прикладними (інженерними, практичними) задачами обробки сигналів є: 1. Ідентифікація і розпізнавання. 2. Телекомунікації. 3. Обробка музичних і мо

Переваги і недоліки ЦОС
Перевагами ЦОС є: Гарантована точність Цілковита відтворюваність. Можна ідентично відтворити кожний елемент, оскільки відсутні відхилення, обумовлен

Основні операції цифрової обробки сигналів
Проте всі ці алгоритми, як правило - блокового типу, тобто побудовані на як завгодно складних комбінаціях досить невеликого набору типових цифрових операцій, до основного з яких відносяться: зго

Застосування ДПФ
На рис. 5.1 наведена схема взаємодії між часовою та частотною областями. Основними сферами застосування ДПФ є: - цифровий спектральний аналіз - аналізатори спектра, обробка мови,

ДПФ як згортка сигналу з базисними функціями
Оскільки комплексна експонента може бути представлена у виді дійсної та уявної частини (формула Ейлера), то основне рівняння ДПФ може бути записано таким чином:

Основні операції фільтрації
До основних операцій фільтрації інформації відносять: - згладжування; - прогнозування; - диференціювання; - інтегрування; - поділ на певні складові;

Класи і параметри фільтрів
Залежно від призначення фільтру, а отже і загального виду його частотної характеристики, виділяють такі основні, найбільш розповсюджені, типи фільтрів (вибіркові фільтри): -

Поняття про швидкі алгоритми
При побудові швидких алгоритмів використовують кілька основних прийомів. Серед них найголовнішими є : 1. Розбиття задачі на підзадачі. 2. Рекурсія - коли деякий метод чи прийом мо

Вправи і завдання до теми №1
1. Визначити період заданого сигналу: . Відповідь :

Зменшення частоти дискретизації: децимація із цілим кроком
На рис. 1.1, а наведена блок-схема процесу децимації сигналу х(n) із цілим кроком М. На ній зображені цифровий фільтр захисту від накладення спектрів h(k) і схема стиску (компресор) частоти дискрет

Збільшення частоти дискретизації: інтерполяція із цілим кроком
Інтерполяція - це цифровий еквівалент процесу цифроаналогового перетворення, коли із цифрових вибірок, поданих на цифроаналоговий перетворювач, за допомогою інтерполяції відновлюється аналоговий си

Перетворення частоти дискретизації з нецілим кроком
У деяких ситуаціях часто буває потрібно змінити частоту дискретизації в неціле число раз. Приклад - цифрове аудіо, де може вимагатися передача даних з одного запам'ятовувального пристрою на інше, п

Багатокаскадне перетворення частоти дискретизації
У п.1.3 зміна частоти дискретизації відбувалося відразу з використанням єдиного коефіцієнта децимації або інтерполяції. Якщо потрібне значна зміна частоти дискретизації, такий підхід неефективний;

Розробка практичних конвертерів частоти дискретизації
Розробку практичного багатокаскадного конвертера частоти дискретизації можна розбити на чотири етапи: Задати загальні вимоги до фільтрів захисту від накладення спектрів і придушення

Специфікація фільтру
Фактично продуктивність системи обробки при декількох швидкостях критично залежить від типу НІХ і якості використовуваного фільтра. Відзначимо, що при децимації й інтерполяції можуть викор

Високоякісне аналого-цифрове перетворення в цифровому аудіо
У сфері цифрового аудіо постійно потрібно підвищувати якість, дозвіл і швидкість АЦП. Це привело до розробки однобітових АЦП із використанням методів дельта-сігма-модуляції. У результаті з'явилася

Ефективне аналого-цифрове перетворення у високоякісних системах відтворення компакт-дисків
Одним з перших серйозних застосувань методів з обробкою при декількох швидкостях стало відтворення звуку й музики в програвачах компакт-дисків. На рис. 6.2 зображена схема відновлення анал

Особливості діагностики та контролю процесорів та систем опрацювання сигналів та зображень
Для контролю і діагностики вузлів опрацювання сигналів застосовуються різні сполучення відомих методів вбудованого і зовнішнього контролю ЕОМ, або методи діагностики складних систем, що базуються н

Рархічність засобів діагностики та контролю процесорів та систем опрацювання сигналів та зображень
Ієрархічність засобів діагностики відповідає ієрархічності обчислювальних засобів. Тому розглядається ієрархічність на рівні: систем, процесорів та окремих вузлів. Використовуються такі за

Процес формування АЧХ
Для обчислення АЧХ нерекурсивних ЦФ здебільшого застосовують метод передаточних функцій. Від передаточної функції, яка в загальному вигляді записується як многочлен виду: H(Z)= a

Визначення і дослідження виду АЧХ
Нехай задано проаналізувати АЧХ фільтра з такими параметрами сигналу: l = 0,1, ...,31; А = 1, 2,...,100; S = 8, 16; Q = -64...64; N = 0,1, …, 31. Згідно

Структура потокового (ковзаючого) процесора ШПФ.
6.Методика вибору оптимального складу НВІС Розглядаються передумови і методика однокристальної реалізації швидкого перетворення Фур'є на приладах програмувальної логіки фі

Використання ПЛІС для високопродуктивної цифрової обробки сигналів та зображень
Є ряд альтернативних рішень побудови високопродуктивних систем, зокрема на замовлених інтегральних схемах (ASІ) і спеціалізованих процесорах цифрової обробки сигналів (DSP). Розглядати питання реал

Таблиця 1. Основні характеристики ПЛІС Xіlіnx серій Vіrtex, Vіrtex-e, XC4000XL/XLAXV, Spartan/XL
Сімейство ПЛІС Системна частота, МГЦ Швидкодія, нс/вентиль Швидкість обміну chіp-to-chіp, МГЦ Ємність ПЛІС, системних вентилів

Таблиця 1. Основні характеристики ПЛІС Xіlіnx серій Vіrtex, Vіrtex-e, XC4000XL/XLAXV, Spartan/XL
Сімейство ПЛІС Системна частота, МГЦ Швидкодія, нс/вентиль Швидкість обміну chіp-to-chіp, МГЦ Ємність ПЛІС, системних вентилів

Оцінка продуктивності вузла виконання операцій ШПФ на ПЛІС.
Оцінимо необхідну продуктивність пристрою обробки. Для обчислення ШПФ 256 точок за основою 2 з комплексними вхідними даними потрібно приблизно 3 тис. множень дійсних операндів і 5,5 тис. додавань д

Таблиця 1. Характеристики М-модулів ШПФ на ПЛІС серії Vіrtex
Розмір перетворення Системних вентилів, тис. Частота надходження вхідних даних, Мгц-real-tіme Час перетворення, мкс

Структура потокового (ковзаючого) процесора ШПФ.
У загальному випадку при побудові М-модуля ШПФ можна піти декількома шляхами: або спроектувати модулі з малими займаними обсягами, великим часом перетворення і малою швидкістю надходження вхідних д

Таблиця 2. Характеристики М-модулів ковзного ШПФ на ПЛІС Xіlіnx
Число точок Тактова частота, МГц Час перетворення, мкс Об’єм модуля, логічних комірок Необхідна ПЛІС

Визначення нейрокомп’ютера.
Нейрокомпьютери - дуже модне слово, яке використовують направо і наліво. На початку 90-х років був дуже бурхливий розвиток даної тематики у вітчизняних розробках. Але разом з рядом серйозних розроб

Базова структура нейрокомп’ютера на основі ПОС.
Зупинимося на особливостях апаратної реалізації нейрообчислювача (НО) (див. рис.5) з можливістю паралельної обробки, що реалізують елементи нейромережі.

Порівняльні характеристики нейрокомп’ютерів на базі ПОС.
Для побудови НО (нейрообчислювач) перспективним є використання сигнальних процесорів із плаваючою крапкою ADSP2106x, TMS320C4x,8x, DSP96002 і ін. Типова структурна схема реалізації НО на основі сиг

Реалізація ШПФ на нейрокомп’ютері.
Розглянемо реалізацію ШПФ на базі процесора Л1879ВМ1(NM6403). Процесор Л1879ВМ1 - високопродуктивний спеціалізований мікропроцесор, що об’єднює в собі риси двох сучасних архітектур: VLIW (Very Long

Співпроцесора NM6403 при розбитті матриці співпроцесора NM6403 при розбитті матриці
вагових коефіцієнтів - (2х32біти)/(8х8біт) вагових коефіцієнтів - (2х32біти)/(2х32біти) По приведених двох варіантах розбивки матриці векторного помножувача виробляється п

Таблиця 2. Порівняльна характеристика точності відновленого сигналу після прямого і зворотного ШПФ із різними основами
Перетворення Фур'є Систематична похибка-M СКО -s 6 біт/1.0 7 біт /1.0 6 біт/1.0 7 біт /1.0

Таблиця 3. Продуктивність функцій прямого і зворотного ШПФ на процесорі NM6403
Кільк. комплекс. відліків Без нормалізації З однією нормалізацією З двома нормализациями Тактів

Аналіз задач і алгоритмів
До основних галузей, де використовується опрацювання сигналів та зображень відносяться: 1. Радіолокація (РЛ) — виявлення, фільтрація сигналу з режекцією завад та накопичення сигналу.

Особливості задач і алгоритмів.
Аналіз наведених задач і алгоритмів їх розв’язання показує, що вони мають такі особливості: - широкий динамічний і частотний діапазон сигналів, що обробляються; - велика інтенсивн

Особливості організації обчислювальних засобів
1.2.1. Методи аналізу обчислювальних засобів архітектур.Технічно системи керування та опрацювання інформації реалізуються як комплекс спеціалізованих і універсальних засобів обчисл

Основні положення алгоритму ШПФ
Визначення 1. Дано кінцеву послідовність x0, x1, x2,..., xN-1 (у загальному випадку комплексних чисел). ДПФ полягає в пошуку послідовності

Основні формули
Теореми, що пояснюють суть перетворення Фур’є (наведені без доведення). Теорема 1. Якщо комплексне число представлене у вигляді e j2πN, де N - ціле, то

Програмна реалізація основних елементів ШПФ
Алгоритм попередньої перестановки Розглянемо конкретну реалізацію ШПФ. Нехай є N=2T елементів послідовності x{N} і треба одержати послідовність

Fft.cpp
/* Fast Fourier Transformation ===================================================== */ #include "fft.h" // This array contains values from 0

Організація DSP- процесорів для задач опрацювання сигналів та зображень
Для опрацювання сигналів та зображень найчастіше використовуються DSP- процесори. Розглянемо підходи до їх реалізації на базі обчислення алгоритму ШПФ. В загальному випадку, вимоги по вико

Типова структура процесора опрацювання сигналів та зображень
На рис. 3.1 наведена спрощена система на базі процесора ADSP-2189M, що використовує повномасштабну модель пам'яті.

Нтерфейси DSP-процесорів
Ефективність роботи DSP- процесора в структурі системи залежить від організації каналів вводу-виводу. До складу сучасних DSP- процесорів (наприклад, ADSP-21ESP202) входять інтегровані АЦП/ЦАП, що з

Аналіз паралельного інтерфейсу з DSP-процесорами: читання даних з АЦП, що під’єднаний до адресного простору пам’яті
Підключення АЦП або ЦАП через паралельний інтерфейс до DSP-процесора вимагає розуміння специфіки процесів читання/запису даних DSP-процесором з/в периферійних пристроїв при їх під’єднані до

Аналіз паралельного інтерейсу з DSP-процесорами: запис даних в ЦАП, що під’єднаний до адресного простору пам’яті
Спрощена блок-схема інтерфейсу між DSP-процесором і наприклад ЦАП) наведена на рис. 4.4. Діаграми циклу запису в пам'ять для сімейства ADSP-21xx наведені на рис.6. В системах реального час

Аналіз послідовного інтерфейсу з DSP-процесорами
Наявність послідовного порту усуває необхідність використання паралельних шин для підключення АЦП і ЦАП до DSP-процесорів. Структурна схема одного з двох послідовних портів процесора сімей

Проектування процесора ШПФ на ПОС
Алгоритм ШПФ із проріджуванням за часом Нехай Розділимо послідовність x(n) на парні (ev

Аналіз (розробка) блок-схеми виконання алгоритму ШПФ на заданому типі процесора
Алгоритм базової операції ШПФ за основою 4 і проріджування за часом можна представити так: А'1 = А1 + A2W1 + A3W2 + A

Розрахунок основних параметрів
Частота роботи процесора: , звідси цикл виконання команди:

Привабливою рисою ПЛІС для реалізації алгоритмів ЦОС є наявність внутрішнього швидкодіючого розподіленого ОЗП, вбудованих вузлів обчислення ШПФ тощо.
На рис. 6.1 наведена структурна схема вузла реалізації алгоритм ШПФ на ПЛІС. Вхідне ОЗП використовується для завантаження вхідної послідовності, збереження результатів проміжних обчислень і виванта

Оцінка продуктивності вузла реалізації алгоритму ШПФ на ПЛІС
Швидкодія виконання алгоритму ШПФ на ПЛІС визначається в NMAC (кількість операцій типу множення-нагромадження) за такою формулою:

Побудова граф-алгоритму ШПФ з основою 2 наведена в попередніх розділах.
При апаратній реалізації графу ШПФ виникають незручності через неспівпадіння адрес комірок пам'яті з яких потрібно вичитувати елементи на кожному ярусі. Тому на рис.6.2. наведений граф, де для кожн

Реалізація алгоритмів опрацювання сигналів та зображень на нейропроцесорах
Нейрокомпьютер - це обчислювальна система з MSІMD архітектурою, тобто з паралельними потоками однакових команд і множинним потоком даних. На сьогодні можна виділити три основних напрямки розвитку о

ВЕКТОРНИЙ СПІВПРОЦЕСОР
Векторний співпроцесор - основний функціональний елемент Л1879ВМ1. Структурно він являє собою матрично-векторний операційний пристрій і набір регістрів різного призначення. Операційний при

Організація паралельних обчислень в алгоритмах ШПФ на процесорі NM6403
Значна частина задач аналізу часових рядів зв'язана з перетворенням Фур'є і методами його ефективного обчислення. У цих задачах перетворення Фур'є відіграє важливу роль як необхідний проміжний крок

Продуктивність і точність обчислень.
Точність обчислень визначається кількістю біт, що відводяться для представлення коефіцієнтівW. Є два способи представлення значень косинусів і синусів у 8 розрядній сітці: 1. W =round(64.0

Загальна характеристика функцій ШПФ.
Вхідні і вихідні дані - цілі 32р. комплексні числа, формат збереження наведений на рис.3 Діапазон вхідних даних зазначений у таблиці 3. Розрядність коефіцієнтів перетворення - 8 б

Стиск нерухомих зображень з використанням дискретних косинусних перетворень
Безвтратні методи стиску не забезпечують потрібного у багатьох випадках степеня стиску зображень. У цьому разі необхідно застосовувати методи стиску з втратою інформації. Одним із найбільш поширени

Стиск нерухомих зображень з використанням хвилькових перетворень
Поняття хвилькового перетворення Дискретне хвилькове перетворення (dyscrete wavelet transform (DWT)) принципово відрізняється від спектральних перетворень. На рис.8.3 показано стр

Стиск зображень з використанням методу кодування областей хвилькового перетворення
У цьому методі розглядаються області коефіцієнтів логарифмічного хвилькового перетворення зображення, які мають різні розміри. Ідея полягає в тому, щоб коефіцієнти в різних областях опрацьовувати (

Стиск зображень з використанням методу дерев нулів хвилькового перетворення
Хвильковий розклад зображення можемо мислити собі як просторову множину коефіцієнтів, яка складається з дерев. Дерево коефіцієнтів хвилькового перетворення означається як множина коефіцієнтів із рі

Адаптивні хвилькові перетворення : Хвилькові пакети.
Слід зауважити, що традиційний підхід використання хвилькових перетворень з фіксованою частотною роздільною здатністю (логарифмічне хвилькове перетворення) є добрий лише в загальному для типового с

Опрацювання мовних сигналів
Багато напрямків мовних технологій (опрацювання мовних сигналів з певною метою: стиск мовних сигналів, cинтез мови, зміна темпу мовлення, розпізнавання або визначення емоційного стану людини за гол

Мовні технології
Виділяють такі напрямки мовних технологій. 1. Стиск (кодування) мови. Високого степеня стиску досягаємо використанням дискретних косинусних перетворень. 2. Синтез мови

Алгоритм динамічного часового вирівнювання для розпізнавання слів з невеликого словника
На фазі навчання як мовні еталони записуємо якнайкоротше вимовлені диктором слова із заданого невеликого словника. Сигнал, який розпізнаємо, та сигнали-еталони параметризуємо – перетворюєм

Розпізнавання злитної мови з великим словником
Сучасні системи для розпізнавання злитної мови з великим словником ґрунтуються на принципах статистичного розпізнавання образів. На першому етапі мовний сигнал перетворюється звуковий преп

Просочування спектральних складових
Вибір кінцевого часового інтервалу тривалістю NT секунд і ортогонального тригонометричного базису на цьому інтервалі обумовлює цікаву особливість спектрального розкладу. 3 континууму можливи

Класичні вікна
Всі наведені вікна представляються як парні (щодо початку координат) і містять непарну кількість точок. Для перетворення вікна в ДПФ-парне вікно достатньо відкинути крайню праву точку і зсунути пос

Гармонійний аналіз
Проаналізуємо вплив властивостей вікна на ефективність виявлення слабої спектральної лінії у присутності інтенсивної близько розташованої лінії. Якщо обидві спектральні лінії потрапляють в біни ДПФ

Висновки
В даному навчальному посібнику описані основні алгоритми опрацювання сигналів та зображень та шляхи їх реалізації. Основна увага приділена системному підходу, який дозволяє розв’язати певну задачу,

Література
  1. Айфигер, Эммануил С., Джервис, Барри У. Цифровая обработка сигналов: практический поход, 2-е изд.: Пер. с англ. – М.: Издательский дом “Вильямс”, 2004. – 992с. 2. Цифров

Рархічність засобів обробки радіолокаційної інформації.
Обробка радіолокаційної інформації (РЛІ) як правило складається з декількох етапів. Первинна обробка РЛІ здійснюється апаратурою радіолокаційної станції (АПОІ РЛС) з видачею інформа

Особливості обробки радіолокаційної інформації. Вибір параметрів радіолокаційної станції, які впливають на характеристики засобів обробки.
  Параметри: - вид сигналу; - потужність сигналу; - тривалість зондувального сигналу /Тс/; - оброблюваний доплерівский діапазон частот /F/ ;

Вимоги до системи
1. Система повинна будуватися на сучасній елементній базі з використанням відповідних міжнародним стандартам конструктивов і інтерфейсів 2. Система повинна мати модульну структуру і будува

Елементна база
Орієнтація на два механічних конструктива і на дві стандартні системні шини приводить до того, що можуть існувати три різних типи уніфікованих модулів: 1. Система на основі ПЕОМ із шинами

Архітектура системи
Пропонується комбінована архітектура на основі поділюваної системної шини і конфігурованих користувачем високопродуктивних прямих з'єднань модулів між собою для рішення задач високопродуктивної обр

Апаратна реалізація мережі
Вузли обчислювальної мережі виконані на процесорах TMS320C40 (TMS320C44), до яких підключена зовнішня оперативна пам'ять ємністю 512-1024 кбайт. У залежності від реалізації процесорного модуля (TІМ

Найпростіша первинна обробка РЛИ на МП мережі
Для відпрацьовування і реалізації на мультипроцесорній мережі найпростішого алгоритму первинної обробки даних було розроблено функціональне програмне забезпечення (ФПЗ), що реалізує алгоритм, зобра

Обмежувач.
·     Алгоритм обчи

Порогові пристрої.
У системі реалізовані порогові пристрої з ковзним порогом. Значення порога обчислювалося по формулі      

Таблиця 1. Часові параметри модулів ФПЗ, отримані в симуляторі.
Програма Цикли Час, мкс Кількість операцій ПК Vmax, (MFLOP) Vвузла, (MFLOP) СРЦ

Таблиця 2. Експериментально виміряні часові параметри модулів ФПЗ.
Програма Цикли Час, мкс Кількість операцій ПК Vmax, (MFLOP) Vвузла, (MFLOP) СРЦ

Призначення ПФОС.
Пристрій формування й обробки сигналів /ПФОС/ входить до складу когерентної далеко-доплерівської радіолокаційної станції, що працює в імпульсному чи квазінеперервному режимі випромінювання і прийом

Принцип побудови і структура ПФОС.
Пристрій формування й обробки сигналів побудовано по модульному принципі з нарощуванням структури і складається з окремих взаємозамінних програмно-апаратних модулів. Кожен програмно-апаратний модул

Технічна реалізація модуля.
Модуль формування й обробки сигналів реалізований на основі пристроїв програмувальної логіки фірм Xіlіnx, Altera і сигнальних процесорів фірми Analog Devіces. Основні технічні характеристики модуля

Модуль кодуючого пристрою .
Кодуючий пристрій призначений для : · забезпечення режимів роботи РЛС і необхідних робочих шкал дальності; · формування модулюючих сигналів , що задають закон амплітудно-фазової м

Режими роботи ПФОС.
ПФОС забезпечує формування й обробку сигналів у двох режимах випромінювання і прийому складних амплітудно-фазоманіпуляційних сигналів: · у квазінеперервному режимі випромінювання й обробки

Квазінеперервний режим випромінювання й обробки.
При квазінеперервному режимі фазоманіпуляційний сигнал з великою базою (В=<256K) випромінюється окремими імпульсами, тривалість і інтервал проходження яких визначається структурою дискретного си

Практичне використання результатів і перспективи розвитку.
В даний час пристрої формування й обробки сигналів (ПФОС) використовуються в розробках, виконаних разом з ведучими НПО і НДІ м. Санкт-Петербурга. Розроблені РЛС успішно пройшли натурні вип

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги