рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Превращения аустенита при охлаждении

Превращения аустенита при охлаждении - раздел Высокие технологии, Онищенко В.И. Материаловедение. Технология конструкционных материалов. Ч 1 и 2. – Волгоград.: Изд. Волгогр. Гос. С.-х. акад – 2006. – 272 с При Охлаждении Ниже Критической Точки АR3 В Интервале А...

При охлаждении ниже критической точки Аr3 в интервале Аr3r1 из аустенита начинают выделяться в доэвтектоидных сталях избыточный феррит, а в заэвтектоидных - избыточный цементит:

А ® Фе или А ® Ц, иными словами g®a или Fe3C ® Fe3C g.

При охлаждении ниже Аr1 происходит эвтектоидное превращение аустенита в перлит:

А®П или g®a+ Fe3C.

Критические точки Аr3 и Аr1в значительно большей степени чувствительны к скорости охлаждения, чем критические точки при нагреве.

При малых переохлаждениях t1, t2 перлитное превращение идет с малой скоростью из-за малой термодинамической активации превращения, по мере увеличения переохлаждения превращение начинается раньше, поскольку устойчивость аустенита уменьшается, достигая минимальной при переохлаждении t3. При более глубоких переохлаждениях t4, t5 устойчивость аустенита против перлитного превращения вновь возрастает вследствие подавления диффузионных процессов при низкой температуре. Превращения аустенита при различных переохлаждениях в зависимости от времени описывают так называемые С-диаграммы или диаграммы изотермического превращения.

Эти диаграммы строят эксперимен-тально для каждой марки стали. Первая С-образная линия соответствует началу превращения переох-лажденного аустени-та в перлит, вторая линия – завершению этого превращения.

Возрастание переохлаждения вплоть до температуры минимальной устойчивости аустенита tm увеличивает дисперсность продуктов перлитного превращения. Превращение аустенита при таких переохлаждениях образует перлит, сорбит или троостит, которые представляют собой эвтектоидные феррито-цементитные смеси возрастающей дисперсности и твердости.

При более глубоких переохлаждениях происходит промежуточное или бейнитное превращение аустенита, которое состоит в диффузионном перераспределении углерода (углерод выделяется из аустенита с образованием сверхмелких карбидов) и сдвиговой перестройке кристаллической структуры g- Fe в a-Fe (ГЦК®ОЦК).

Если удается переохладить аустенит ниже температуры Мн (см. рис 27), то происходит мартенситное сдвиговое превращение без предварительной диффузионного выделения углерода. В результате образуется пересыщенный твердый раствор углерода в a-Fe – мартенсит.

Эта фаза имеет тетрагональую объемноцентрированную кристалл-лическую структуру (ОЦТ), причем степень тетрагональности (отноше-ние параметров решетки с/а) возрастает с увеличением содер-жания углерода в мартенсите.

Мартенситное превращение происходит в интервале температур Мнк. Температуры начала и конца мартенситного превращения снижаются по мере возрастания содержания углерода в аустените. В заэвтектоид­ных сталях точка Мк может перейти в область отрицатель­ных температур, тогда после охлаждения до комнатной температуры в структуре закаленной стали останется некоторое количество не­превращенного остаточного аустенита, Аост. Естественно, чем больше углерода растворено в аустените, тем больше его останется в стали после закалки. Присутствие в структуре закаленной стали снижает ее твердость.

– Конец работы –

Эта тема принадлежит разделу:

Онищенко В.И. Материаловедение. Технология конструкционных материалов. Ч 1 и 2. – Волгоград.: Изд. Волгогр. Гос. С.-х. акад – 2006. – 272 с

Г П Фетисов М Г Карпман В М Гаврилюк и др Материаловедение и технология материалов М Высшая школа... Сильман Г И Материаловедение М Издательский центр Академия... Арзамасов Материаловедение...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Превращения аустенита при охлаждении

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Лекция 1
Предмет материаловедения. Взаимосвязь структуры и свойств материалов. Материаловедение – это наука, изучающая связь между составом, строением и свойствами материалов, закономерности их изм

Взаимосвязь структуры и свойств материалов
Свойства материала определяются его структурой, которая по степени локальности может быть разделена на следующие ступени: - макроструктура, составляющие которой различаются невооруженным г

Фазы и структурные составляющие металлических сплавов. Диаграммы состояния.
Основными техническими материалами являются металлические сплавы, состоящие из двух и более компонентов (металлов и неметаллов). Входящие в состав сплава компоненты, взаимодействуя между собой в, з

Диаграмма с идеальной эвтектикой
В диаграммах с эвтектикой линии ликвидуса и солидуса касаются друг друга в точке С, то есть существует такой сплав, который кристаллизуется не в интервале температур, а при постоянной температуре Т

Механические и специальные свойства материалов
Свойство – это качественная или количественная характеристика материала, определяющая общность или отличие его от других материалов и служащая основой выбора материала для использования его в конкр

Лекция 4. Формирование структур литых материалов. Литейные технологии
Расплав чистого металла при охлаждении ниже равновесной температуры плавления (зат

Форма первичных кристаллов и строение слитка.

Лекция 5. Железоуглеродистые сплавы. Система железо - графит и железо - цементит.
Наибольшее распространение среди конструкционных материалов имеют сплавы железа с углеродом: стали и чугуны. Конечно, промышленные стали и чугуны являются многокомпонентными сплавами и сод

Железоуглеродистых сплавов
При смешении железа и углерода образуются следующие фазы: - жидкий и твердые растворы углерода в железе, а также такие твердые фазы как, химическое соединение карбид железа Fe3C

Лекция 6. Основы термической обработки сталей и сплавов.
Стали, двухфазные алюминиевые бронзы, сплавы на основе титана претерпевают эвтектоидное превращение. Теоретической основой термической обработки таких сплавов являются следующие превращения при наг

Превращения в стали при нагреве
Таким образом при нагреве стали выше Ас1 происходит превращение обратное эвтектоидному: П®А, или (a+Fe3C)®g. В интервале температур Ас1 - Ас3

Превращения при отпуске закаленной стали
После закалки сталь имеет структуру тетрагонального мартенсита и остаточного аустенита. Свежезакаленное состояние стали характеризуется крайней нестабильностью структуры и свойств, высокими остаточ

Изменение свойств стали при термической обработке
Закаленная сталь, имеет структуру тетрагонального мартенсита и остаточного аустенита и характеризуется высокой твердостью, зависящей от содержания углерода.

Поверхностное упрочнение стальных изделий
Если наряду с работой в условиях сложного напряженного состояния, деталь подвергается интенсивному износу, применяют поверхностное упрочнение: используют поверхностную закалку, чаще всего с нагрева

Практические вопросы термической обработки стали
Закалка стали состоит в нагреве до температуры аустенитизации, выдержке при этой температуре и охлаждении со скоростью не менее критической скорости закалки. Температуру нагрева под

Лекция 8. Конструкционные и специальные стали и сплавы
Конструкционными называют стали, предназначенные для изготовления деталей машин или механизмов и строительных конструкций. Они могут быть углеродистыми или легированными. Углеродистые стал

Специальные стали и сплавы.
Инструментальная сталь.Инструменты можно условно разделить на измерительные, штамповые и режущие, условия работы этих групп инструментов существенно разнятся, соответственно и треб

Коррозионностойкие (нержавеющие) и кислотостойкие стали и сплавы
Углеродистые и низколегированные стали под действием воды, воздуха и других сред могут подвергаться поверхностному разрушению – коррозии. В результате коррозии ежегодно теряется около 10% общего ко

Износостойкие стали и сплавы
Механизм износа разнообразен и зависит от условий изнашивания, но в общем виде он заключается в удалении ( вырывании) частиц металла с поверхности под действием внешних сил трения. К износ

Титан и его сплавы
Титан существует в двух модификациях: ниже 883°C устойчива гексагональная a-модификация, плотность 4,505 кг/дм3; выше 883°C устойчива b-модификация с кубической объемно-центрированной решеткой и пл

Медь и её сплавы.
Кристаллическая решетка металлической меди кубическая гранецентрированная, плотность 8,92 г/см3, температура плавления 1083,4°C. Медь среди всех других металлов обладает одной из самых высоких тепл

Алюминий и его сплавы
По масштабам применения алюминий и его сплавы занимают второе место после железа и его сплавов. Широкое применение алюминия в различных областях техники и быта связано с совокупностью его физически

Сплавы на основе никеля
Никелевые сплавы применяются в основном как жаропрочные и коррозионностойкие материалы. Чистый никель имеет низкий предел длительной прочности (

Лекция 14.
ЭЛЕКТРОТЕХНИЧЕСКИЕ МАТЕРИАЛЫ Классификация веществ по электрическим свойствам в соответствии с зонной теорией Все вещества в зависимости от их электрических свойств относят к диэл

Материалы высокой проводимости
Проводниковые материалы, кроме высокой электрической проводимости, должны иметь достаточную прочность, пластичность, коррозионную стойкость в атмосферных условиях и в некоторых случаях высокую изно

Сплавы с высоким электросопротивлением
Сплавы для нагревательных элементов печей Сплавы для электронагревательных элементов печей являются жаростойкими проводниковыми материалами на основе никеля, хрома, железа и некоторых друг

Сверхпроводники и криопроводники
Особую группу материалов высокой электрической проводимости представляют сверхпроводники. Наличие у вещества практически бесконечной удельной проводимости было названо сверхпроводимостью

Полупроводниковые материалы
Полупроводники представляют собой материалы, которые по удельной электропроводности занимают промежуточное положение между проводниками (металлами) и диэлектриками. При незначительных внешних возде

Полупроводниковые материалы
Полупроводники представляют собой материалы, которые по удельной электропроводности занимают промежуточное положение между проводниками (металлами) и диэлектриками. При незначительных внешних возде

Электропроводность полупроводников
Появление электрического тока в полупроводнике возможно лишь тогда, когда часть электронов покидает заполненную валентную зону и переходит в зону проводимости, где они становятся носителями электри

Полупроводниковые химические соединения и материалы на их основе
Помимо элементов (Ge, Si), обладающих свойствами полупроводников, широкое применение в электротехнике получили полупроводниковые соединения - карбид кремния SiC, арсенид галлия GaAs, антимонид инди

Диэлектрические материалы
Назначение и классификация диэлектриков Термины «электроизоляционный материал» и «диэлектрический материал» не совсем равнозначны. К основным электрическим свойствам диэлектриков наряду с

Газообразные диэлектрики
Электрическая прочность, характеризуемая напряжённостью однородного электрического поля, при которой происходит резкое, скачкообразное увеличение электрической проводимости (пр

Жидкие диэлектрики
В качестве диэлектриков применяют различные по химической природе и горючести жидкости – минеральные и растительные масла, а также синтетические жидкие вещества.

Синтетические жидкие диэлектрики
Ранее широко применялись синтетические жидкости на основе хлорированных углеводородов, обладающих высокой термоокислительной и электрической стабильностью

Контактные материалы
В качестве контактных материалов для разрывных контактов, помимо чистых тугоплавких металлов (Сг, W), применяются различные сплавы и металлокерамические композиции на основе порошков серебра и окис

Магнитные материалы
Магнитная восприимчивость - величина, характеризующая способность вещества намагничиваться в магнитном поле. Вектор намагниченности М, т.е. магнитный момент единицы объема веще

Магнитомягкие материалы
Помимо малой коэрцитивной силы (Нс<4кА/м) магнитомягкие материалы должны обладать высокой магнитной проницаемости и большой индукцией насыщения, чтобы пропускать максимальный м

Сплавы с заданным температурным коэффициентом линейного расширения
В приборостроении в ряде случаев требуются сплавы с самыми разнообразными свойствами, например, сплавы с коэффициентом линейного расширения, равным коэффициенту линейного расширения стекла, или с к

Формирование структур литых материалов. Литейные технологии
Расплав чистого металла при охлаждении ниже равновесной температуры плавления (зат

Форма первичных кристаллов и строение слитка.

Сварочное производство
Сварка— высокопроизводительный и универсальный технологический процесс получения неразъёмного соединения посредством установления межатомных связей между свариваемыми частями при и

Электроды для дуговой сварки и наплавки
При ручной дуговой сварке плавлением применяют неплавящиеся и плавящиеся электроды и некоторые другие вспомогательные материалы. Неплавящиеся электроды предназн

Режимы ручной дуговой сварки плавящимся электродом
Под режимом сварки понимают совокупность условий протекания процесса сварки, обеспечивающих получение сварных соединений заданных размеров, формы и качества. При ручной

Виды и характеристика стружки
При обработке заготовок резанием образуется сливная стружка, стружка скалывания или надлома. При обработке пластичных материалов образуется сливная стружка в виде спл

Геометрия прямого токарного резца
Рассмотрим параметры режущего инструмента на примере прямого токарного проходного резца

Тепловыделение и износ инструмента
Сила резания — это сила сопротивления перемещению режущего инструмента относительно обрабатываемой заготовки. Результатом сопротивления металла заготовки процессу резания является возникновение реа

Инструментальные материалы
Основными требованиями к инструментальным материалам являются высокая твердость и теплостойкость, т.е. способность сохранять высокую твердость до высоких температур, развивающихся в зоне резания.

Группа 0 — резервная
- группа 1 — токарные станки имеют типы - - 0 — специализированные автоматы и полуавтоматы; - - 1 — одношпиндельные автоматы и полуавтоматы;

Лезвийная обработка деталей машин
В лезвийной обработке (в зависимости от вида и направления движений резания, вида обработанной поверхности) можно выделить следующие технологические методы: точение, строгание, долбление, протягива

Отделочная обработка деталей машин
Отделочная обработка, т.е. финишные операции при изготовлении деталей позволяют получить обработанную поверхность с размерной точностью, соответствующей 4 —5-му квалитету и шероховатости Rz

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги