рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Специальные стали и сплавы.

Специальные стали и сплавы. - раздел Высокие технологии, Онищенко В.И. Материаловедение. Технология конструкционных материалов. Ч 1 и 2. – Волгоград.: Изд. Волгогр. Гос. С.-х. акад – 2006. – 272 с Инструментальная Сталь.Инструменты Можно Условно Разделить Н...

Инструментальная сталь.Инструменты можно условно разделить на измерительные, штамповые и режущие, условия работы этих групп инструментов существенно разнятся, соответственно и требования к материалам для них разные.

Материалы для режущих инструментов должны обладать высокой твердостью, износостойкостью и теплостойкостью.

Чем интенсивнее режимы резания, т.е. чем выше скорость и усилия резания, чем выше прочность и вязкость обрабатываемого металла, тем сильнее разогревается режущая кромка инструмента. Работоспособность инструмента в этих условиях будет зависеть от теплостойкости инструментальной стали, т.е. от её способности не снижать твердость под действием повышенных температур.

Теплостойкость углеродистых и низколегированных сталей, например, У10А, У13А не более 200°С.

Поэтому углеродистые инструментальные стали заэвтектоидного состава применяют для изготовления:

- измерительного инструмента, для которого важно сохранять неизменные размеры и сопротивляться износу при комнатной температуре;

-небольших штампов холодной высадки или вытяжки, работающих при невысоких нагрузках;

- для мелких инструментов с режущей частью, не превышающей глубину прокаливаемости нелегированной стали. Это могут быть метчики, развертки, напильники, пилы и пр.

Если требуется термическое упрочнение на большую глубину применяют низколегированные Cr, Mn, Si, W стали (не более 5% легирующих элементов в сумме). В состоянии закалки и низкого отпуска со структурой мартенсит и мелкие, равномерно распределенные карбиды, низколегированные стали хорошо сопротивляются деформациям и растрескиванию, но имеют низкую теплостойкость не выше 200-280°С и не могут использоваться при интенсивных режимах резания или для изготовления штампов горячей обработки давлением.

Быстрорежущие стали.Быстрорежущие стали относятся к высоколегированным сталям с содержанием углерода также более 1%. Они имеют более высокую теплостойкость и сохраняют твердость до 560-640 °С.

В марочном обозначении быстрорежущих сталей присутствует буква Р на первом месте., затем указано процентное содержание основного легирующего элемента – вольфрама. Содержание ванадия до 2% и хрома до 4% в марке не отображается. Дополнительное легирование Mo, Co, V>2% обозначается в марке буквами М, К и Ф с соответствующими их процентному содержанию цифрами, например,

Р18, Р9Ф5, Р10К5Ф5, Р6М5.

В литом и отожженном состоянии структура быстрорежущих сталей содержит карбидную эвтектику, которую устраняют дроблением карбидов при горячей деформации.

Общее количество карбидов в структуре составляет 22-28 объемных %. По фазовому составу карбиды представлены: Fe3W3C(Me6C), где Ме - V Cr; (FeCr)23C6; VC(MeC) Me6C.

В состав карбидов входит до 80-95%W+V и до 50%Cr, остальная часть легирующих элементов растворена в a-твердом растворе.

Термическая обработка инструмента из быстрорежущей стали включает закалку от 1270-1290 °С и трехкратный отпуск при 550-570°С, иногда между закалкой и отпуском выполняют обработку холодом при −80°С для превращения остаточного аустенита.

После термообработки структура быстрорежущей стали представляет собой мартенсит и равномерно распределенные мелкие карбиды, твердость 63-65HRC.

Порошковые твердые сплавы.Порошковые твердые сплавы состоят из высокотвердых тугоплавких карбидов W, Ti, Ta, соединенных металлической связкой из Со.

Изготавливают твердосплавные инструменты методами порошковой металлургии. Вначале получают порошки карбидов и Со, затем смешивают их в заданной пропорции. Смесь порошков уплотняют в пресс-форме, получая заготовку необходимой конфигурации. Затем прессовку нагревают при 1400-1550 °С, кобальт плавится и растворяет часть карбидов.

Полученный спеченный материал состоит на 80-85% из карбидных частиц. Его твердость достигает 74-76 HRC, а теплостойкость повышается до 800-1000°С.

Получаемые таким способом твердые сплавы принято делить на следующие группы:

- вольфрамовые сплавы, содержащие только карбиды вольфрама, например, ВК3(WC-97%; Co- 3%) 89,5 HRC, ВК10 - 87 HRC;

-титановольфрамовые сплавы, в состав которых входят карбиды вольфрама и карбиды титана, например, Т30К4 (WC-60%, TiC-30%< Co-4%) - 92 HRC;

итанотанталовольфрамовые сплавы, карбидная фаза которых состоит из карбидов W, Ti и Ta, например, ТТ7К12 с твердостью 90,5 HRC.

Сверхтвердые материалы.Инструменты для чистовой обработки изготавливают из сверхтвердых материалов, таких, например, как алмаз.

Алмаз имеет твердость 10000 HV, что в 6 раз превышает твердость карбида вольфрама (1700 HV). Для изготовления инструмента широко применяются синтетические алмазы - борт, баллас и карбонадо поликристаллического строения. Эти разновидности алмазов относительно недороги, менее хрупкие и более теплостойкие, чем монокристаллы.

Алмаз теплостоек до температуры 800°С, при более высоких температурах он графитизируется. Из-за высокой адгезии к железоуглеродистым сплавам алмазный инструмент ограниченно используется при точении стали и чугуна, но широко применяется для обработки цветных металлов и сплавов, керамики и пластмассы.

Для чистовой обработки труднообрабатываемых сплавов на основе железа применяют такие материалы на основе поликристаллического нитрида бора BN с кубической структурой (боразона), как эльбор, эльбор-Р. По твердости (9000 HV) эти материалы приближаются к алмазу, а теплостойкость их достигает 1200°С. По отношению к железу нитрид бора химически инертен.

Жаропрочные и жаростойкие стали и сплавы.

Жаростойкость (окалиностойкость) это способность металлических сплавов противостоять химическому разрушению поверхности под действием воздуха или другой окислительной газовой среды при высоких температурах (>550°С). Жаростойкие сплавы способны работать при повышенных температурах в ненагруженном или слабонагруженном состоянии.

Для повышения окалиностойкости сталь легируют хромом, алюминием, кремнием, никелем. Если рабочая температура составляет 900°С, то содержание хрома в стали должно быть не менее 10%, для работы при температуре 1100°С необходимы стали с содержанием хрома >20%. Структура жаростойких сталей должна быть однофазной ферритной (хромистые стали) или аустенитной (хромо-никелевые).

Марки жаростойких сталей и сплавов:

прокат – 12Х17 (tраб=900°С), 12Х18Н9Т (tраб=850°С), 12Х25Н16Г7АР (tраб=1100°С), ХН45Ю (tраб=1400°С), ХН78Т (tраб=1150°С);

для литья – 15Х25ТЛ (tраб=1050°С), 15Х25Н19С2Л (tраб=1150°С).

Жаропрочность это способность конструкционных материалов (главным образом, металлических сплавов) выдерживать без существенных деформаций механические нагрузки при высоких температурах. Определяется комплексом свойств: сопротивлением ползучести, длительной прочностью и жаростойкостью.

Предельное напряжение, при котором может работать деталь из жаропрочной стали при повышенной температуре, в значительной степени зависит от времени приложения нагрузки, и поэтому называется длительной прочностью, s100. Индекс здесь обозначает время приложения нагрузки в часах.

При повышенных рабочих температурах - s1> s10> s100> s300, tраб=20°С, то s1 = s10 = s100 = s300.

Увеличение с течением времени деформации при повышенной температуре и постоянном напряжении называется ползучестью. Скорость ползучести интенсивно возрастает при температуре выше температуры рекристаллизации tрекр.= аTпл (коэффициент а зависит от чистоты металла, так для чистых металлов а»0,2; для металлов технической чистоты - а»0,4, для твердых растворов – а»0,7…0,8). Поэтому рабочая температура жаростойких сталей и сплавов должна быть ниже tрекр. Например:

 

Al и его сплавы Fe Mo

tпл , °С 657 и ниже 1539 2600

tраб,°С 250 700 1200-

1400.

Но некоторые металлы и их сплавы могут работать только при более низкой температуре, например медь имеет относительно высокую температуру плавления tпл = 1083°С, но рабочая температура для меди и её сплавов низкая, не более 250°С.

Сопротивление ползучести жаропрочных сталей и сплавов характеризуется пределом ползучести sпл – напряжением, которое вызывает при рабочей температуре развитие деформации с заданной скоростью, например 1% за 300 ч.

До температуры 300°С явления ползучести в сплавах на основе железа не проявляются, и поэтому для работы при таких температурах могут быть использованы нелегированные стали. Повышение рабочей температуры до 350…500 °С требует применения малолегированных сталей перлитного и ферритного класса.

При рабочих температурах 500…600°С используют легированные стали аустенитного класса. Повышение рабочих температур до 650…900°С диктует необходимость применения сплавов на никелевой или кобальтовой основе, а при более высоких температурах под нагрузкой могут работать только сплавы на основе Mo, Cr и других тугоплавких металлов.

В разных отраслях техники рабочие температуры могут значительно различаться:- котлостроение – tраб= 350…550°С;-турбостроение - tраб= 500…650°С;- газовые турбины и ракетная техника tраб= >650°С.

Для работы под нагрузкой при повышенных температурах используют следующие стали и сплавы:

- котельные стали с малым содержанием углерода (0,08…0,19%) могут быть перлитного класса, например 12МХ, мартенситного класса (Х5БФ) или мартенситно-ферритного (15Х11МФ).

- сильхромы – жаропрочные и жаростойкие стали, содержащие 5-15%Cr и 1-3%Si, марки Х10С2М, Х13Н17С2 (для клапанов выпуска, элементов теплообменников);

-аустенитные жаропрочные стали марок Х18Н9Т, 1Х25Н16Г7АР(ЭИ835)[1] и дисперсионнотвердеющие стали 0Х14Н28В3Т3Ю (для клапанов двигателей и лопаток турбин, работающих при температурах 600-700°С.

-никелевые и кобальтовые сплавы (для лопаток газовых турбин и реактивных двигателей), например сплав марки ХН77ТЮ(ЭИ437А); нимоник 90, сплав на основе Ni, легированный Cr – 18-21%, Ti – 3% с s1000=340МПа при tраб=700°С; витталиум или ЛКУ – сплав на основе Со, легированный также Cr – 25-30%, Mo - 4-6% и Ni, tраб=950-1000°С.

– Конец работы –

Эта тема принадлежит разделу:

Онищенко В.И. Материаловедение. Технология конструкционных материалов. Ч 1 и 2. – Волгоград.: Изд. Волгогр. Гос. С.-х. акад – 2006. – 272 с

Г П Фетисов М Г Карпман В М Гаврилюк и др Материаловедение и технология материалов М Высшая школа... Сильман Г И Материаловедение М Издательский центр Академия... Арзамасов Материаловедение...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Специальные стали и сплавы.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Лекция 1
Предмет материаловедения. Взаимосвязь структуры и свойств материалов. Материаловедение – это наука, изучающая связь между составом, строением и свойствами материалов, закономерности их изм

Взаимосвязь структуры и свойств материалов
Свойства материала определяются его структурой, которая по степени локальности может быть разделена на следующие ступени: - макроструктура, составляющие которой различаются невооруженным г

Фазы и структурные составляющие металлических сплавов. Диаграммы состояния.
Основными техническими материалами являются металлические сплавы, состоящие из двух и более компонентов (металлов и неметаллов). Входящие в состав сплава компоненты, взаимодействуя между собой в, з

Диаграмма с идеальной эвтектикой
В диаграммах с эвтектикой линии ликвидуса и солидуса касаются друг друга в точке С, то есть существует такой сплав, который кристаллизуется не в интервале температур, а при постоянной температуре Т

Механические и специальные свойства материалов
Свойство – это качественная или количественная характеристика материала, определяющая общность или отличие его от других материалов и служащая основой выбора материала для использования его в конкр

Лекция 4. Формирование структур литых материалов. Литейные технологии
Расплав чистого металла при охлаждении ниже равновесной температуры плавления (зат

Форма первичных кристаллов и строение слитка.

Лекция 5. Железоуглеродистые сплавы. Система железо - графит и железо - цементит.
Наибольшее распространение среди конструкционных материалов имеют сплавы железа с углеродом: стали и чугуны. Конечно, промышленные стали и чугуны являются многокомпонентными сплавами и сод

Железоуглеродистых сплавов
При смешении железа и углерода образуются следующие фазы: - жидкий и твердые растворы углерода в железе, а также такие твердые фазы как, химическое соединение карбид железа Fe3C

Лекция 6. Основы термической обработки сталей и сплавов.
Стали, двухфазные алюминиевые бронзы, сплавы на основе титана претерпевают эвтектоидное превращение. Теоретической основой термической обработки таких сплавов являются следующие превращения при наг

Превращения в стали при нагреве
Таким образом при нагреве стали выше Ас1 происходит превращение обратное эвтектоидному: П®А, или (a+Fe3C)®g. В интервале температур Ас1 - Ас3

Превращения аустенита при охлаждении
При охлаждении ниже критической точки Аr3 в интервале Аr3-Аr1 из аустенита начинают выделяться в доэвтектоидных сталях избыточный ф

Превращения при отпуске закаленной стали
После закалки сталь имеет структуру тетрагонального мартенсита и остаточного аустенита. Свежезакаленное состояние стали характеризуется крайней нестабильностью структуры и свойств, высокими остаточ

Изменение свойств стали при термической обработке
Закаленная сталь, имеет структуру тетрагонального мартенсита и остаточного аустенита и характеризуется высокой твердостью, зависящей от содержания углерода.

Поверхностное упрочнение стальных изделий
Если наряду с работой в условиях сложного напряженного состояния, деталь подвергается интенсивному износу, применяют поверхностное упрочнение: используют поверхностную закалку, чаще всего с нагрева

Практические вопросы термической обработки стали
Закалка стали состоит в нагреве до температуры аустенитизации, выдержке при этой температуре и охлаждении со скоростью не менее критической скорости закалки. Температуру нагрева под

Лекция 8. Конструкционные и специальные стали и сплавы
Конструкционными называют стали, предназначенные для изготовления деталей машин или механизмов и строительных конструкций. Они могут быть углеродистыми или легированными. Углеродистые стал

Коррозионностойкие (нержавеющие) и кислотостойкие стали и сплавы
Углеродистые и низколегированные стали под действием воды, воздуха и других сред могут подвергаться поверхностному разрушению – коррозии. В результате коррозии ежегодно теряется около 10% общего ко

Износостойкие стали и сплавы
Механизм износа разнообразен и зависит от условий изнашивания, но в общем виде он заключается в удалении ( вырывании) частиц металла с поверхности под действием внешних сил трения. К износ

Титан и его сплавы
Титан существует в двух модификациях: ниже 883°C устойчива гексагональная a-модификация, плотность 4,505 кг/дм3; выше 883°C устойчива b-модификация с кубической объемно-центрированной решеткой и пл

Медь и её сплавы.
Кристаллическая решетка металлической меди кубическая гранецентрированная, плотность 8,92 г/см3, температура плавления 1083,4°C. Медь среди всех других металлов обладает одной из самых высоких тепл

Алюминий и его сплавы
По масштабам применения алюминий и его сплавы занимают второе место после железа и его сплавов. Широкое применение алюминия в различных областях техники и быта связано с совокупностью его физически

Сплавы на основе никеля
Никелевые сплавы применяются в основном как жаропрочные и коррозионностойкие материалы. Чистый никель имеет низкий предел длительной прочности (

Лекция 14.
ЭЛЕКТРОТЕХНИЧЕСКИЕ МАТЕРИАЛЫ Классификация веществ по электрическим свойствам в соответствии с зонной теорией Все вещества в зависимости от их электрических свойств относят к диэл

Материалы высокой проводимости
Проводниковые материалы, кроме высокой электрической проводимости, должны иметь достаточную прочность, пластичность, коррозионную стойкость в атмосферных условиях и в некоторых случаях высокую изно

Сплавы с высоким электросопротивлением
Сплавы для нагревательных элементов печей Сплавы для электронагревательных элементов печей являются жаростойкими проводниковыми материалами на основе никеля, хрома, железа и некоторых друг

Сверхпроводники и криопроводники
Особую группу материалов высокой электрической проводимости представляют сверхпроводники. Наличие у вещества практически бесконечной удельной проводимости было названо сверхпроводимостью

Полупроводниковые материалы
Полупроводники представляют собой материалы, которые по удельной электропроводности занимают промежуточное положение между проводниками (металлами) и диэлектриками. При незначительных внешних возде

Полупроводниковые материалы
Полупроводники представляют собой материалы, которые по удельной электропроводности занимают промежуточное положение между проводниками (металлами) и диэлектриками. При незначительных внешних возде

Электропроводность полупроводников
Появление электрического тока в полупроводнике возможно лишь тогда, когда часть электронов покидает заполненную валентную зону и переходит в зону проводимости, где они становятся носителями электри

Полупроводниковые химические соединения и материалы на их основе
Помимо элементов (Ge, Si), обладающих свойствами полупроводников, широкое применение в электротехнике получили полупроводниковые соединения - карбид кремния SiC, арсенид галлия GaAs, антимонид инди

Диэлектрические материалы
Назначение и классификация диэлектриков Термины «электроизоляционный материал» и «диэлектрический материал» не совсем равнозначны. К основным электрическим свойствам диэлектриков наряду с

Газообразные диэлектрики
Электрическая прочность, характеризуемая напряжённостью однородного электрического поля, при которой происходит резкое, скачкообразное увеличение электрической проводимости (пр

Жидкие диэлектрики
В качестве диэлектриков применяют различные по химической природе и горючести жидкости – минеральные и растительные масла, а также синтетические жидкие вещества.

Синтетические жидкие диэлектрики
Ранее широко применялись синтетические жидкости на основе хлорированных углеводородов, обладающих высокой термоокислительной и электрической стабильностью

Контактные материалы
В качестве контактных материалов для разрывных контактов, помимо чистых тугоплавких металлов (Сг, W), применяются различные сплавы и металлокерамические композиции на основе порошков серебра и окис

Магнитные материалы
Магнитная восприимчивость - величина, характеризующая способность вещества намагничиваться в магнитном поле. Вектор намагниченности М, т.е. магнитный момент единицы объема веще

Магнитомягкие материалы
Помимо малой коэрцитивной силы (Нс<4кА/м) магнитомягкие материалы должны обладать высокой магнитной проницаемости и большой индукцией насыщения, чтобы пропускать максимальный м

Сплавы с заданным температурным коэффициентом линейного расширения
В приборостроении в ряде случаев требуются сплавы с самыми разнообразными свойствами, например, сплавы с коэффициентом линейного расширения, равным коэффициенту линейного расширения стекла, или с к

Формирование структур литых материалов. Литейные технологии
Расплав чистого металла при охлаждении ниже равновесной температуры плавления (зат

Форма первичных кристаллов и строение слитка.

Сварочное производство
Сварка— высокопроизводительный и универсальный технологический процесс получения неразъёмного соединения посредством установления межатомных связей между свариваемыми частями при и

Электроды для дуговой сварки и наплавки
При ручной дуговой сварке плавлением применяют неплавящиеся и плавящиеся электроды и некоторые другие вспомогательные материалы. Неплавящиеся электроды предназн

Режимы ручной дуговой сварки плавящимся электродом
Под режимом сварки понимают совокупность условий протекания процесса сварки, обеспечивающих получение сварных соединений заданных размеров, формы и качества. При ручной

Виды и характеристика стружки
При обработке заготовок резанием образуется сливная стружка, стружка скалывания или надлома. При обработке пластичных материалов образуется сливная стружка в виде спл

Геометрия прямого токарного резца
Рассмотрим параметры режущего инструмента на примере прямого токарного проходного резца

Тепловыделение и износ инструмента
Сила резания — это сила сопротивления перемещению режущего инструмента относительно обрабатываемой заготовки. Результатом сопротивления металла заготовки процессу резания является возникновение реа

Инструментальные материалы
Основными требованиями к инструментальным материалам являются высокая твердость и теплостойкость, т.е. способность сохранять высокую твердость до высоких температур, развивающихся в зоне резания.

Группа 0 — резервная
- группа 1 — токарные станки имеют типы - - 0 — специализированные автоматы и полуавтоматы; - - 1 — одношпиндельные автоматы и полуавтоматы;

Лезвийная обработка деталей машин
В лезвийной обработке (в зависимости от вида и направления движений резания, вида обработанной поверхности) можно выделить следующие технологические методы: точение, строгание, долбление, протягива

Отделочная обработка деталей машин
Отделочная обработка, т.е. финишные операции при изготовлении деталей позволяют получить обработанную поверхность с размерной точностью, соответствующей 4 —5-му квалитету и шероховатости Rz

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги