рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Лекция 14.

Лекция 14. - раздел Высокие технологии, Онищенко В.И. Материаловедение. Технология конструкционных материалов. Ч 1 и 2. – Волгоград.: Изд. Волгогр. Гос. С.-х. акад – 2006. – 272 с Электротехнические Материалы Классификация Веществ По Электрическим ...

ЭЛЕКТРОТЕХНИЧЕСКИЕ МАТЕРИАЛЫ

Классификация веществ по электрическим свойствам в соответствии с зонной теорией

Все вещества в зависимости от их электрических свойств относят к диэлектрикам, проводникам или полупроводникам. Различие между проводниками, полупроводниками и диэлектриками наиболее наглядно можно показать с помощью энергетических диаграмм зонной теории твердых тел.

Электроны атомов каждого вещества в газообразном состоянии (когда атомы расположены относительно друг друга на больших расстояниях, и их взаимодействием можно пренебречь) могут находиться только в определенных энергетических состояниях (занимать определенные уровни энергии).

 

 

Соотношение энергетических уровней изолированного атома (1,2) и атома в твердом теле (3,5)

 

 

1 — нормальный энергетический уровень атома; 2уровни возбужденного состояния атома; 3 — свободная зона; 4 — запрещенная зона; 5заполненная электронами зона

В конденсированном состоянии (жидком, а тем более в твердом) под действием соседних атомов электронные уровни (заполненные и незаполненные электронами) расщепляются, образуя полосу — зону энергетических уровней.

Если в зоне не все энергетические уровни заняты электронами, то электроны могут, повышая свою энергию за счет энергии внешних воздействий, переходить на более высокие свободные уровни. Такие электроны, находящиеся внутри частично заполненной энергетической зоны, называются свободными электронами в твердом теле. Если к кристаллу приложено электрическое поле, изменению энер­гии свободных электронов соответствует направленное перемещение их в пространстве, т.е. свободные электроны обусловливают протекание электрического тока.

Энергетические зоны, образованные совокупностью энергетических уровней, называют зонами разрешенных значений энергии или разрешенными зонами. Разрешенные зоны обычно отделены друг от друга запрещенными зонами, т.е. промежутками значений энергии, которыми электрон в данном кристалле обладать не может.

Электрический ток в твердых телах может быть обусловлен свободными электронами, перемещающимися в в разрешенной зоне, расположенной над валентной - в зоне проводимости.

В соответствии с видом энергетических диаграмм электротехнические материалы можно разделить на диэлектрики, полупроводники и проводники.

Энергетические зоны в изоляторе (а), полупроводнике (б) и металле (в)

У диэлектриков запрещенная зона настолько велика, что электронной электропроводности в обычных случаях не наблюдается.

У проводников заполненная электронами зона вплотную прилегает к зоне свободных энергетических уровней или даже перекрывается ею. Вследствие этого свободные электроны в металле могут переходить с уровней заполненной зоны на незанятые уровни зоны проводимости под влиянием слабой напряженности приложенного к проводнику электрического поля и приходить в направленное движение под действием разницы потенциалов.

Полупроводники обладают более узкой запрещенной зоной, которая может быть преодолена за счет внешних энергетических воздействий.

При отсутствии в полупроводнике свободных электронов (при нуле Кельвина) приложенная к нему разность электрических потенциалов не вызовет тока. Если извне будет подведена энергия, достаточная для переброса электронов через запрещенную зону, то, став свободными, электроны смогут перемещаться под действием электрического поля, создавая электронную электропроводность полупроводника.

В заполненной зоне, откуда ушел электрон, образовалась «электронная дырка», а потому в полупроводнике начнется другое, «эстафетное», движение электронов, заполняющих образовавшуюся дырку, причем под воздействием электрического поля дырка будет перемещаться в направлении поля, как эквивалентный положительный заряд.

Энергию, необходимую для перехода электрона в свободное состояние или для образования дырки, может доставить не только тепловое движение, но и другие источники энергии, например свет, поток электронов и ядерных частиц, электрические и магнитные поля, механические воздействия и т. д.

Электрические свойства вещества не являются непременной особенностью составляющих его атомов, они определяются условиями взаимодействия атомов вещества в твердом теле. Например, углерод в виде алмаза является диэлектриком или полупроводником, а в виде графита обладает большой проводимостью. В ГЦК кристаллической структуре алмаза все валентные электроны у каждого из атомов углерода не свободны, они задействованы в ковалентных связях. Свободные электроны или «дырки» в алмазе могут появиться при введении некоторых примесей, тогда алмаз проявляет полупроводниковые свойства.

У графита слоистая гексагональная кристаллическая структура, между слоями действуют молекулярные силы химической связи, в слоях атомы связаны парными и одинарными ковалентными связями.

Парные связи ввиду своей нестойкости частично преобразуются в одинарные, а освободившиеся валентные электроны могут стать свободными, обеспечивающими электропроводность графита.

Вещества, в кристаллической структуре которых преобладают металлические связи, предполагающие наличие свободных электронов, являются проводниками.

Проводниковые материалы

В качестве проводников электрического тока могут быть использованы как твердые тела, так и жидкости, а при соответствующих условиях и газы. Важнейшими практически применяемыми в электротехнике твердыми проводниковыми материалами являются металлы и их сплавы.

Из металлических проводниковых материалов могут быть выделены металлы высокой проводимости, имеющие удельное сопротивление r при нормальной температуре не более 0,05 мкОм·м, и сплавы высокого сопротивления, имеющие р при нормальной температуре не менее 0,3 мкОм-м.

Металлы высокой проводимости используются для проводов, токопроводящих жил кабелей, обмоток электрических машин и трансформаторов и т.п.

Металлы и сплавы высокого электросопротивления, применяются для изготовления резисторов, электронагревательных приборов и т.п.

Особый интерес представляют собой материалы, обладающие нулевым и чрезвычайно малым удельным сопротивлением при весьма низких (криогенных) температурах сверхпроводники и криопроводники.

К жидким проводникам относятся расплавленные металлы и различные электролиты. Все газы и пары, в том числе и пары металлов, при низких напряженностях электрического поля не являются проводниками. Однако, если напряженность поля превзойдет некоторое критическое значение, обеспечивающее начало фото- и ударной ионизации, то газ стать проводником с электронной и ионной электропроводностью. Сильно ионизированный газ представляет собой особую проводящую среду, носящую название плазмы.

Механизм прохождения тока в металлах - как в твердом, так и в жидком состоянии - обусловлен движением свободных электронов под воздействием электрического поля, поэтому металлы называют проводниками с электронной электропроводностью, или проводниками первого рода. Проводниками второго рода с ионной проводимостью, или электролитами, являются растворы (в частности, водные) кислот, щелочей и солей.

– Конец работы –

Эта тема принадлежит разделу:

Онищенко В.И. Материаловедение. Технология конструкционных материалов. Ч 1 и 2. – Волгоград.: Изд. Волгогр. Гос. С.-х. акад – 2006. – 272 с

Г П Фетисов М Г Карпман В М Гаврилюк и др Материаловедение и технология материалов М Высшая школа... Сильман Г И Материаловедение М Издательский центр Академия... Арзамасов Материаловедение...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Лекция 14.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Лекция 1
Предмет материаловедения. Взаимосвязь структуры и свойств материалов. Материаловедение – это наука, изучающая связь между составом, строением и свойствами материалов, закономерности их изм

Взаимосвязь структуры и свойств материалов
Свойства материала определяются его структурой, которая по степени локальности может быть разделена на следующие ступени: - макроструктура, составляющие которой различаются невооруженным г

Фазы и структурные составляющие металлических сплавов. Диаграммы состояния.
Основными техническими материалами являются металлические сплавы, состоящие из двух и более компонентов (металлов и неметаллов). Входящие в состав сплава компоненты, взаимодействуя между собой в, з

Диаграмма с идеальной эвтектикой
В диаграммах с эвтектикой линии ликвидуса и солидуса касаются друг друга в точке С, то есть существует такой сплав, который кристаллизуется не в интервале температур, а при постоянной температуре Т

Механические и специальные свойства материалов
Свойство – это качественная или количественная характеристика материала, определяющая общность или отличие его от других материалов и служащая основой выбора материала для использования его в конкр

Лекция 4. Формирование структур литых материалов. Литейные технологии
Расплав чистого металла при охлаждении ниже равновесной температуры плавления (зат

Форма первичных кристаллов и строение слитка.

Лекция 5. Железоуглеродистые сплавы. Система железо - графит и железо - цементит.
Наибольшее распространение среди конструкционных материалов имеют сплавы железа с углеродом: стали и чугуны. Конечно, промышленные стали и чугуны являются многокомпонентными сплавами и сод

Железоуглеродистых сплавов
При смешении железа и углерода образуются следующие фазы: - жидкий и твердые растворы углерода в железе, а также такие твердые фазы как, химическое соединение карбид железа Fe3C

Лекция 6. Основы термической обработки сталей и сплавов.
Стали, двухфазные алюминиевые бронзы, сплавы на основе титана претерпевают эвтектоидное превращение. Теоретической основой термической обработки таких сплавов являются следующие превращения при наг

Превращения в стали при нагреве
Таким образом при нагреве стали выше Ас1 происходит превращение обратное эвтектоидному: П®А, или (a+Fe3C)®g. В интервале температур Ас1 - Ас3

Превращения аустенита при охлаждении
При охлаждении ниже критической точки Аr3 в интервале Аr3-Аr1 из аустенита начинают выделяться в доэвтектоидных сталях избыточный ф

Превращения при отпуске закаленной стали
После закалки сталь имеет структуру тетрагонального мартенсита и остаточного аустенита. Свежезакаленное состояние стали характеризуется крайней нестабильностью структуры и свойств, высокими остаточ

Изменение свойств стали при термической обработке
Закаленная сталь, имеет структуру тетрагонального мартенсита и остаточного аустенита и характеризуется высокой твердостью, зависящей от содержания углерода.

Поверхностное упрочнение стальных изделий
Если наряду с работой в условиях сложного напряженного состояния, деталь подвергается интенсивному износу, применяют поверхностное упрочнение: используют поверхностную закалку, чаще всего с нагрева

Практические вопросы термической обработки стали
Закалка стали состоит в нагреве до температуры аустенитизации, выдержке при этой температуре и охлаждении со скоростью не менее критической скорости закалки. Температуру нагрева под

Лекция 8. Конструкционные и специальные стали и сплавы
Конструкционными называют стали, предназначенные для изготовления деталей машин или механизмов и строительных конструкций. Они могут быть углеродистыми или легированными. Углеродистые стал

Специальные стали и сплавы.
Инструментальная сталь.Инструменты можно условно разделить на измерительные, штамповые и режущие, условия работы этих групп инструментов существенно разнятся, соответственно и треб

Коррозионностойкие (нержавеющие) и кислотостойкие стали и сплавы
Углеродистые и низколегированные стали под действием воды, воздуха и других сред могут подвергаться поверхностному разрушению – коррозии. В результате коррозии ежегодно теряется около 10% общего ко

Износостойкие стали и сплавы
Механизм износа разнообразен и зависит от условий изнашивания, но в общем виде он заключается в удалении ( вырывании) частиц металла с поверхности под действием внешних сил трения. К износ

Титан и его сплавы
Титан существует в двух модификациях: ниже 883°C устойчива гексагональная a-модификация, плотность 4,505 кг/дм3; выше 883°C устойчива b-модификация с кубической объемно-центрированной решеткой и пл

Медь и её сплавы.
Кристаллическая решетка металлической меди кубическая гранецентрированная, плотность 8,92 г/см3, температура плавления 1083,4°C. Медь среди всех других металлов обладает одной из самых высоких тепл

Алюминий и его сплавы
По масштабам применения алюминий и его сплавы занимают второе место после железа и его сплавов. Широкое применение алюминия в различных областях техники и быта связано с совокупностью его физически

Сплавы на основе никеля
Никелевые сплавы применяются в основном как жаропрочные и коррозионностойкие материалы. Чистый никель имеет низкий предел длительной прочности (

Материалы высокой проводимости
Проводниковые материалы, кроме высокой электрической проводимости, должны иметь достаточную прочность, пластичность, коррозионную стойкость в атмосферных условиях и в некоторых случаях высокую изно

Сплавы с высоким электросопротивлением
Сплавы для нагревательных элементов печей Сплавы для электронагревательных элементов печей являются жаростойкими проводниковыми материалами на основе никеля, хрома, железа и некоторых друг

Сверхпроводники и криопроводники
Особую группу материалов высокой электрической проводимости представляют сверхпроводники. Наличие у вещества практически бесконечной удельной проводимости было названо сверхпроводимостью

Полупроводниковые материалы
Полупроводники представляют собой материалы, которые по удельной электропроводности занимают промежуточное положение между проводниками (металлами) и диэлектриками. При незначительных внешних возде

Полупроводниковые материалы
Полупроводники представляют собой материалы, которые по удельной электропроводности занимают промежуточное положение между проводниками (металлами) и диэлектриками. При незначительных внешних возде

Электропроводность полупроводников
Появление электрического тока в полупроводнике возможно лишь тогда, когда часть электронов покидает заполненную валентную зону и переходит в зону проводимости, где они становятся носителями электри

Полупроводниковые химические соединения и материалы на их основе
Помимо элементов (Ge, Si), обладающих свойствами полупроводников, широкое применение в электротехнике получили полупроводниковые соединения - карбид кремния SiC, арсенид галлия GaAs, антимонид инди

Диэлектрические материалы
Назначение и классификация диэлектриков Термины «электроизоляционный материал» и «диэлектрический материал» не совсем равнозначны. К основным электрическим свойствам диэлектриков наряду с

Газообразные диэлектрики
Электрическая прочность, характеризуемая напряжённостью однородного электрического поля, при которой происходит резкое, скачкообразное увеличение электрической проводимости (пр

Жидкие диэлектрики
В качестве диэлектриков применяют различные по химической природе и горючести жидкости – минеральные и растительные масла, а также синтетические жидкие вещества.

Синтетические жидкие диэлектрики
Ранее широко применялись синтетические жидкости на основе хлорированных углеводородов, обладающих высокой термоокислительной и электрической стабильностью

Контактные материалы
В качестве контактных материалов для разрывных контактов, помимо чистых тугоплавких металлов (Сг, W), применяются различные сплавы и металлокерамические композиции на основе порошков серебра и окис

Магнитные материалы
Магнитная восприимчивость - величина, характеризующая способность вещества намагничиваться в магнитном поле. Вектор намагниченности М, т.е. магнитный момент единицы объема веще

Магнитомягкие материалы
Помимо малой коэрцитивной силы (Нс<4кА/м) магнитомягкие материалы должны обладать высокой магнитной проницаемости и большой индукцией насыщения, чтобы пропускать максимальный м

Сплавы с заданным температурным коэффициентом линейного расширения
В приборостроении в ряде случаев требуются сплавы с самыми разнообразными свойствами, например, сплавы с коэффициентом линейного расширения, равным коэффициенту линейного расширения стекла, или с к

Формирование структур литых материалов. Литейные технологии
Расплав чистого металла при охлаждении ниже равновесной температуры плавления (зат

Форма первичных кристаллов и строение слитка.

Сварочное производство
Сварка— высокопроизводительный и универсальный технологический процесс получения неразъёмного соединения посредством установления межатомных связей между свариваемыми частями при и

Электроды для дуговой сварки и наплавки
При ручной дуговой сварке плавлением применяют неплавящиеся и плавящиеся электроды и некоторые другие вспомогательные материалы. Неплавящиеся электроды предназн

Режимы ручной дуговой сварки плавящимся электродом
Под режимом сварки понимают совокупность условий протекания процесса сварки, обеспечивающих получение сварных соединений заданных размеров, формы и качества. При ручной

Виды и характеристика стружки
При обработке заготовок резанием образуется сливная стружка, стружка скалывания или надлома. При обработке пластичных материалов образуется сливная стружка в виде спл

Геометрия прямого токарного резца
Рассмотрим параметры режущего инструмента на примере прямого токарного проходного резца

Тепловыделение и износ инструмента
Сила резания — это сила сопротивления перемещению режущего инструмента относительно обрабатываемой заготовки. Результатом сопротивления металла заготовки процессу резания является возникновение реа

Инструментальные материалы
Основными требованиями к инструментальным материалам являются высокая твердость и теплостойкость, т.е. способность сохранять высокую твердость до высоких температур, развивающихся в зоне резания.

Группа 0 — резервная
- группа 1 — токарные станки имеют типы - - 0 — специализированные автоматы и полуавтоматы; - - 1 — одношпиндельные автоматы и полуавтоматы;

Лезвийная обработка деталей машин
В лезвийной обработке (в зависимости от вида и направления движений резания, вида обработанной поверхности) можно выделить следующие технологические методы: точение, строгание, долбление, протягива

Отделочная обработка деталей машин
Отделочная обработка, т.е. финишные операции при изготовлении деталей позволяют получить обработанную поверхность с размерной точностью, соответствующей 4 —5-му квалитету и шероховатости Rz

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги