рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Моделирование в условиях определенности

Моделирование в условиях определенности - Конспект Лекций, раздел Экономика, УЧЕТ И АУДИТ. Конспект лекций Классическим Примером Простейшей Задачи Системного Анализа В Условиях Определ...

Классическим примером простейшей задачи системного анализа в условиях определенности может служить задача производства и поставок товара. Пусть некоторая фирма должна производить и поставлять продукцию клиентам равномерными партиями в количестве N =24000 единиц в год. Срыв поставок недопустим, так как штраф за это можно считать бесконечно большим.

Запускать в производство приходится сразу всю партию, таковы условия технологии. Стоимость хранения единицы продукции Cx=10 копеек в месяц, а стоимость запуска одной партии в производство (независимо от ее объема) составляет Cp =400 гривен.

Таким образом, запускать в год много партий явно невыгодно, но невыгодно и выпустить всего 2 партии в год — слишком велики затраты на хранение! Где же “золотая середина”, сколько партий в год лучше всего выпускать?

Будем строить модель такой системы. Обозначим через n размер партии и найдем количество партий за год — p = N / n 24000 / n.

Получается, что интервал времени между партиями составляет

t = 12 / p (месяцев), а средний запас изделий на складе — n/2 штук.

Сколько же нам будет стоить выпуск партии в n штук за один раз?

Сосчитать нетрудно — 0.1 · 12 · n / 2 гривен на складские расходы в год и 400p гривен за запуск партий по n штук изделий в каждой.

В общем виде годовые затраты составляют

E = Tn / 2 + N / n {3 - 2}

где T = 12 — полное время наблюдения в месяцах.

Перед нами типичная вариационная задача: найти такое n0, при котором сумма E достигает минимума.

Решение этой задачи найти совсем просто — надо взять производную по n и приравнять эту производную нулю. Это дает

n0 = , {3 - 3}

что для нашего примера составляет 4000 единиц в одной партии и соответствует интервалу выпуска партий величиной в 2 месяца.

Затраты при этом минимальны и определяются как

E0 = , {3 - 4}

что для нашего примера составляет 4800 гривен в год.

Сопоставим эту сумму с затратами при выпуске 2000 изделий в партии или выпуске партии один раз в месяц (в духе недобрых традиций социалистического планового хозяйства):

E1= 0.1·12·2000/2 + 400·24000/ 2000 = 6000 гривен в год.

Комментарии, как говорится, — излишни!

Конечно, так просто решать задачи выработки оптимальных стратегий удается далеко не всегда, даже если речь идет о детерминированных данных для описания жизни системы — ее модели. Существует целый класс задач системного анализа и соответствующих им моделей систем, где речь идет о необходимости минимизировать одну функции многих переменных следующего типа:

E = a1X1 + a2X2 + ..... anXn {3 - 5}

где Xi — искомые переменные, ai — соответствующие им коэффициенты или “веса переменных” и при этом имеют место ограничения как на переменные, так и на их веса.

Задачи такого класса достаточно хорошо исследованы в специальном разделе прикладной математики — линейном программировании. Еще в докомпьютерные времена были разработаны алгоритмы поиска экстремумов таких функций E = f(a,X), которые так и назвали — целевыми. Эти алгоритмы или приемы используются и сейчас — служат основой для разработки прикладных компьютерных программ системного анализа.

Системный подход к решению практических задач управления экономикой, особенно для задач со многими десятками сотен или даже тысячами переменных привел к появлению специализированных, типовых направлений как в области теории анализа, так и в практике.

Наиболее “старыми” и, следовательно, наиболее обкатанными являются методы решения специфичных задач, которые давно уже можно называть классическими.

Специалистам в области делового администрирования надо знать эти задачи хотя бы на уровне постановки и, главное, в плане моделирования соответствующих систем.

· Задачи управления запасами

Первые задачи управления запасами были рассмотрены еще в 1915 году — задолго не только до появления компьютеров, но и до употребления термина “кибернетика”. Был обоснован метод решения простейшей задачи — минимизация затрат на заказ и хранение запасов при заданном спросе на данную продукцию и фиксированном уровне цен. Решение — размер оптимальной партии обеспечивало наименьшие суммарные затраты за заданный период времени.

Несколько позже были построены алгоритмы решения задачи управления запасами при более сложных условиях — изменении уровня цен (наличие “скидок за качество” и / или “скидок за количество”); необходимостиучета линейных ограничений на складские мощности и т. п.

· Задачи распределения ресурсов

В этих задачах объектом анализа являются системы, в которых приходится выполнять несколько операций с продукцией (при наличии нескольких способов выполнения этих операций) и, кроме того, не хватает ресурсов или оборудования для выполнения всех этих операций.

Цель системного анализа — найти способ наиболее эффективного выполнения операций с учетом ограничений на ресурсы.

Объединяет все такие задачи метод их решения — метод математического программирования, в частности, — линейного программирования. В самом общем виде задача линейного программирования формулируется так:

требуется обеспечить минимум выражения (целевой функции)

E(X) = C1X1 + C2X2 + ......+ CiXi + ... CnXn{3 - 6} при следующих условиях:

все Xi положительны и, кроме того, на все Xi налагаются mограничений (m < n)

 
 


A11·X1 + A12·X2 + ......+ Aij·Xj + ... A1n·Xn = B1;

.....................................................................................

Ai1·X1 + Ai2·X2 + ......+ Aij·Xj + ... Ain·Xn = Bi; {3 - 7}

.....................................................................................

Am1·X1 + Am2·X2 + .....+ Amj·Xj+ ... Amn·Xn = Bm .

Начала теоретического обоснования и разработки практических методов решения задач линейного программирования были положены Д.Данцигом (по другой версии — Л.В.Канторовичем).

Для большинства конкретных приложений универсальным считается т. н. симплекс-метод поиска цели, для него и смежных методов разработаны специальные пакеты прикладных программ (ППП) для компьютеров.

 

3.5 Наличие нескольких целей — многокритериальность системы

Весьма часто этап содержательной постановки задачи системного анализа приводит нас к выводу о наличии нескольких целей функционирования системы. В самом деле, если некоторая экономическая система может иметь “главную цель” — достижение максимальной прибыли, то почти всегда можно наблюдать ситуацию наличия ограничений или условий. Нарушение этих условий либо невозможно (тогда не будет самой системы), либо заведомо приводит к недопустимым последствиям для внешней cреды. Короче говоря, ситуация, когда цель всего одна и достичь ее требуется любой ценой, практически невероятна.

Пусть имеется самая простая ситуация многокритериальности — существуют только две цели системы T1 и T2 и только две возможных стратегии S1, S2.

Пусть мы как-то оценили эффективность E11 стратегии S1 по отношению к T1и эффективность эта оказалась равной 0.4 (по некоторой шкале 0..1). Проделав такую же оценку для всех стратегий и всех целей, мы получили табличку (матрицу эффективностей):

 

Таблица 3.1

E T1 T2
S1 0.4 0.6
S2 0.7 0.3

Какую же из стратегий считать наилучшей? Пока мы не оговорим значимость каждой из целей, не укажем их веса, — спорить бесполезно! Вот если бы нам было известно, что первая цель, к примеру, в 3 раза важнее второй, то тогда

можно учесть их относительные веса — скажем величинами 0.75 для первой и 0.25 для второй. При таких условиях суммарные эффективности стратегий (по отношению ко всем целям) составят:

для первой E1 = 0.4 · 0.70 + 0.6 · 0.30 = 0.28 + 0.18 = 0.46;

для второй E2 = 0.8 · 0.70 + 0.2 · 0.25 = 0.56 + 0.05 = 0.61;

так что ответ на вопрос о выборе стратегии далеко не очевиден.

Итак, критерий эффективности системы при наличии нескольких целей приходится выражать через эффективности отдельных стратегий виде: Es = S St ·Ut {3 - 8}

т. е. учитывать веса отдельных целей Ut.

Если вы внимательно следили за рассуждениями при рассмотрении примера {3-2}, то сейчас можете сообразить, что по сути дела там речь шла о двух целях. С одной стороны, мы хотели бы иметь как можно меньшие партии — их дешевле хранить (мал срок хранения). с другой стороны, нам были желательны большие партии, поскольку при этом меньше затраты на запуск партий в производство. Если бы мы перебирали все 365 возможных стратегий (от смены партии каждый день до одной в год), то, конечно же, нашли бы оптимальную стратегию со сменой партий каждые два месяца. Другое дело, что в нашем распоряжении была аналитическая модель системы (формула суммарных затрат).

Так вот — весовые коэффициенты целей в той модели были равными и мы их могли не замечать при поиске минимума затрат. Ну, а что делать, если “важность” целей приходится измерять не по шкале Int или Rel, т. е. в числовом виде,а по шкалеOrd? Иными словами — откуда берутся весовые коэффициенты целей?

Очень редко весовые коэффициенты определяются однозначно по “физическому смыслу” задачи системного анализа. Чаще же всего их отыскание можно называть “назначением”, “придумыванием”, “предсказанием” — т. е. никак не "научными" действиями.

Иногда, как ни странно это звучит, весовые коэффициенты назначаются путем голосования — явного или тайного. Дело в том, что в ситуациях, когда нет числового метода оценки веса цели, реальным выходом из положения является использование накопленного опыта.

Нередко задает весовые коэффициенты непосредственно ЛПР, но чаще его опыт управления подсказывает: одна голова — хорошо, а много умных голов — куда лучше. Принимается особое решение — использовать метод экспертных оценок..

Суть этого метода достаточно проста. Требуется четко оговорить все цели функционирования системы и предложить группе лиц, высоко компетентных в данной отрасли (экспертов) хотя бы расположить все цели по значимости, по “призовым местам” или, на языке ТССА, по рангам.

Высший ранг (обычно 1) означает наибольшую важность (вес) цели, следующий за ним — несколько меньший вес и т. д. Специальный раздел непараметрической статистики — теория ранговой корреляции, позволяет проверить гипотезы о значимости полученной от экспертов информации. Развитие ранговой корреляции, ее другой раздел, позволяет устанавливать согласие, согласованность мнений экспертов или ранговую конкордацию.

Это особо важно в случаях, когда не только возникла нужда использовать мнения экспертов, но и существует сомнение в их компетентности.

 

– Конец работы –

Эта тема принадлежит разделу:

УЧЕТ И АУДИТ. Конспект лекций

Конспект лекций для специальности УЧЕТ И АУДИТ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Моделирование в условиях определенности

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Общие понятия теории систем и системного анализа
Термины теория систем и системный анализ или, более кратко — системный подход, несмотря на период более 25 лет их использования, все еще не нашли общепринятого, стандартного ис

Сущность и принципы системного подхода
ТССА, как отрасль науки, может быть разделена на две, достаточно условные части: · теоретическую: использующую такие отрасли как теория вероятностей, теория информаци

Проблемы согласования целей
Как уже отмечалось, в большинстве случаев (в экономических системах — повсеместно), показателем полноты достижения цели “жизни” системы служит стоимостной показатель. Разумеется, что выбор показате

Проблемы оценки связей в системе
Рассмотрим теперь вопрос о связях системы — между отдельными элементами подсистем, подсистемами разных уровней и связях с внешней средой. Хотя бы умозрительно можно полагать наличие каналов,

Моделирование как метод системного анализа
Одной из проблем, с которой сталкиваются почти всегда при проведении системного анализа, является проблема эксперимента в системе или над системой. Очень редко это разрешено моральным

Процессы принятия управляющих решений
Пусть построена модель системы с соблюдением всех принципов системного подхода, разработаны и “обкатаны” алгоритмы необходимых расчетов, приготовлены варианты управляющих воздействий на систему. На

Случайные события и величины, их основные характеристики
Как уже говорилось, при анализе больших систем наполнителем каналов связи между элементами, подсистемами и системы в целом могут быть: · продукция, т. е. реальные, физически ощутимые пред

Взаимосвязи случайных событий
Вернемся теперь к вопросу о случайных событиях. Здесь методически удобнее рассматривать вначале простые события (может произойти или не произойти). Вероятность события X будем обозначать

Схемы случайных событий и законы распределений случайных величин
Большую роль в теории и практике системного анализа играют некоторые стандартные распределения непрерывных и дискретных СВ. Эти распределения иногда называют "теоретическими", п

Методы непараметрической статистики
Использование классических распределений случайных величин обычно называют "параметрической статистикой" - мы делаем предположение о том, что интересующая нас СВ (дискретная или непрерывн

Корреляция случайных величин
Прямое токование термина корреляция — стохастическая, вероятная, возможная связь между двумя (парная) или несколькими (множественная) случайными величинами. Вы

Линейная регрессия
В тех случаях, когда из природы процессов в системе или из данных наблюдений над ней следует вывод о нормальном законе распределения двух СВ - Y и X, из которых одна является независи

Элементы теории статистических решений
Что такое - статистическое решение? В качестве простейшего примера рассмотрим ситуацию, в которой вам предлагают сыграть в такую игру: · вам заплатят 2 доллара, если подброшенная монета у

Общие положения
В большинстве случаев практического применения системного анализа для исследования свойств и последующего оптимального управления системой можно выделить следующие основные этапы: · Содержательная

Содержательная постановка задачи
Уже упоминалось, что в постановке задачи системного анализа обязательно участие двух сторон: заказчика (ЛПР) и исполнителя данного системного проекта. При этом участие заказчика не ограничивается ф

Построение модели изучаемой системы в общем случае
Модель изучаемой системы в самом лаконичном виде можно представить в виде зависимости E = f(X,Y){3 - 1} где: E— некоторый количественный показатель эффек

Экспертные оценки, ранговая корреляция и конкордация
Пусть в процессе системного анализа нам пришлось учитывать некоторую величину U, измерение которой возможно лишь по порядковой шкале (Ord).Например, нам приходится учитывать 10 целей

Моделирование системы в условиях неопределенности
Как уже отмечалось в первой части нашего курса, в большинстве реальных больших систем не обойтись без учета “состояний природы” — воздействий стохастического типа, случайных величин или случ

Моделирование систем массового обслуживания
Достаточно часто при анализе экономических систем приходится решать т. н. задачи массового обслуживания, возникающие в следующей ситуации. Пусть анализируется система технического обслуживания авто

Моделирование в условиях противодействия, игровые модели
Как уже неоднократно отмечалось, системный анализ невозможен без учета взаимодействий данной системы с внешней средой. Ранее упоминалась необходимость учитывать состояния природы — бо

Моделирование в условиях противодействия, модели торгов
К этому классу относятся задачи анализа систем с противодействием (конкуренцией), также игровых по сути, но с одной особенностью — "правила игры" не постоянны в одном единственном пункте

Методы анализа больших систем, планирование экспериментов
  Еще в начале рассмотрения вопросов о целях и методах системного анализа мы обнаружили ситуации, в которых нет возможности описать элемент системы, подсистему и систему в целом а

Методы анализа больших систем, факторный анализ
  Данный параграф является заключительным и более не будет возможности осветить еще одну особенность методов системного анализа, показать вам еще один путь к достижению профессиональ

От автора
Выражая благодарность каждому, кто дочитал до этого места или прослушал все лекции и посетил все семинары, автор считает своим долгом сделать ряд пояснений, раскрыть свою позицию и свои взгляды на

Теория систем и системный анализ
Общие вопросы системного анализа Методы поиска экстремума Уайлд Д.Дж. Наука об управлении. Байесовский подход

Общие вопросы математики
Комбинаторика Введение в комбинаторный анализ Риордан Дж. Прикладная комбинаторная математика Бе

Математическая статистика
Общие вопросы Метод наименьших квадратов Линник Ю.В. Теория распределений Кендалл М.,СтьюартА.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги