рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Нормальный закон распределения результатов измерений

Нормальный закон распределения результатов измерений - раздел Спорт, Практикум по дисциплине спортивная метрология Многие Ряды Распределения, Встречающиеся В Статистических Наблюдениях, Можно ...

Многие ряды распределения, встречающиеся в статистических наблюдениях, можно охарактеризовать формулами разных математических функций. Функции или законы распределения случайных величин бывают: биноминальное, геометрическое, равномерное, нормальное и др. Самым важным в статистике является нормальное распределение.

Нормальное распределение – это совокупность объектов, в которой крайние значения некоторого признака – наименьшее и наибольшее – появляются редко; чем ближе значение признака к среднему значению, тем чаще оно встречается. Например, распределение студентов по их весу приближается к нормальному.

Нормальный закон (закон Гаусса) распределения результатов измерений непрерывных величин наиболее часто встречается и в спортивной практике.

Нормальное распределение описывается формулой, впервые предложенной английским математиком Муавром в 1733 году:

(5.1)

где p и e – математические константы (p = 3,141; e = 2,718); и s – соответственно, среднее арифметическое и среднее квадратическое отклонение результатов измерений; xi – результаты измерений; f(x) – так называемая функция плотности распределения.

Плотность распределения – это количество признака в единице интервала.

Формула (5.1) позволяет получить в виде графика кривую нормального распределения (рисунок 5.1), которая симметрична относительно центра группирования (как правило, это значение среднего арифметического ).

 
 

 


Рисунок 5.1 – Кривая нормального распределения

Эта кривая может быть получена из полигона распределения при бесконечно большом числе наблюдений и интервалов (см. рисунок 2.1 II этапа игры).

Чтобы избежать неудобств, связанных с расчётами для каждого конкретного случая по достаточно сложной формуле (5.1), используют так называемое нормированное (или стандартное) нормальное распределение, для которого составлены подробные таблицы.

Нормированное нормальное распределение имеет параметры = 0 и σ = 1. Это распределение получается, если пронормировать нормально распределённую величину x по формуле:

.

Плотность распределения вероятностей нормированного нормального распределения записывается в виде:

.

На кривой нормированного нормального распределения (рисунок 5.2) указаны в процентах доли площадей, соответствующих отмеченным значениям нормированного отклонения u, по отношению к общей площади под кривой, равной 1 (100 %). Эти площади определяют вероятности попадания случайной величины в соответствующие интервалы.

 

Рисунок 5.2 – Кривая нормированного распределения

 

4. Основные свойства кривой нормального распределения(рисунок 5.1)

1. Кривая симметрична относительно среднего арифметического (моды, медианы).

2. При x = .

3. При .

4. Площадь, заключенная между кривой f(x) и осью x, равна единице.

5. Кривая имеет две точки перегиба при .

 

5. Влияние и σ на вид кривой нормального распределения

1. Изменение среднего арифметического значения не меняет форму кривой, а приводит лишь к сдвигу кривой вдоль оси X: при s = const.

 

 
 

 


Рисунок 5.3 – Влияние на вид кривой нормального распределения

2. С увеличением s максимальная ордината кривой убывает, а сама кривая становится более пологой, при уменьшении s кривая становится более островершинной. При любых значениях и s площадь, ограниченная кривой и осью X, одинакова и равна единице.

В результате спортивной тренировки средняя арифметическая должна улучшаться (в зависимости от вида спорта или увеличиваться, или уменьшаться), а стандартное отклонение s должно уменьшаться. С увеличением стабильности и устойчивости спортивных результатов, составляющих нормально распределенные выборки, кривая распределения становится более островершинной.

 

 

 


Рисунок 5.4 – Влияние s на вид кривой нормального распределения

6. Вероятности попадания в области , , . Правило трёх сигм

 

 

 
 

 


Рисунок 5.5 – Вероятность попадания результатов, составляющих нормально распределенную выборку, на заданный участок кривой:

68,27 % всех результатов попадает на участок отдо ;

95,45 % всех результатов попадает на участок отдо ;

99,73 % всех результатов попадает на участок отдо

Правило трех сигм заключается в том, что практически все результаты, составляющие нормально распределенную выборку, находятся в пределах .

Это правило можно использовать при решении следующих важных задач:

1. Оценки нормальности распределения выборочных данных. Если результаты находятся примерно в пределах и в области среднего арифметического результаты встречаются чаще, а вправо и влево от него – реже, то можно предположить, что результаты распределены нормально.

2. Выявление ошибочно полученных результатов. Если отдельные результаты отклоняются от среднего арифметического значения на величины, значительно превосходящие 3s, нужно проверить правильность полученных величин. Часто такие «выскакивающие» результаты могут появиться в результате неисправности прибора, ошибки в измерении и расчетах.

3. Оценка величины s. Если размах варьирования R = Xmax – Xmin, разделить на 6, то мы получим грубо приближенное значение s.

Задавшись процентом попаданий P%, можно найти область
X ± u×s, где u – число сигм, согласно таблице 5.1:

Таблица 5.1 – Процентные точки нормированного нормального распределения

P% 99,9
u 1,64 1,96 2,58 3,29

 

– Конец работы –

Эта тема принадлежит разделу:

Практикум по дисциплине спортивная метрология

Кафедра биомеханики.. ю о волков л л солтанович с л рукавицына практикум по дисциплине спортивная метрология..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Нормальный закон распределения результатов измерений

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Спортивная метрология
    Минск 2011   Авторы: Ю.О. Волков Л.Л. Солтанович С.Л. Рукавицына, кан

Игровая ситуация
В пособии предложена игровая ситуация, позволяющая студентам ощутить атмосферу работы в коллективе СДЮСШ. Каждый студент имитирует работу тренера по подготовке группы из 10 спортсменов, сп

Решение задачи
Для проверки эффективности указанной методики «тренер» должен проследить, как в ходе тренировок по проверяемой методике изменяются показатели, характеризующие скоростные качества у спортсменов. Дан

Студента 137 гр. Иванова И
о проверке эффективности методики тренировки с применением методов математической статистики   Разделы отчета оформляются в соответствии с образцами, пр

Шкалы измерений
Шкала измерения – это закон, по которому численное значение присваивается измеряемому результату по мере его возрастания или убывания. Рассмотрим некоторые из применяемых в спорте

Единицы измерений
Чтобы результаты разных измерений можно было сравнить друг с другом, их выражают в одних и тех же единицах. Совокупность установленных определённым образом единиц для всех физических величин называ

Точность измерений
Никакое измерение не может быть выполнено абсолютно точно. Результат измерения неизбежно содержит погрешность, величина которой тем меньше, чем точнее метод измерения и измерительный прибор. Наприм

Порядок работы на I этапе
1. Ознакомиться с содержанием I этапа деловой игры. 2. Ознакомиться с теоретическими сведениями. 3. Ознакомиться с образцом оформления отчета о результатах работы на I этапе игры.

Ситуация и организация игры на II этапе
На I этапе данные о скоростных качествах, собранные в ходе тестирования «спортсменов» (эти данные составили выборки, обозначенные индексами А, Б и В), были упорядочены и сведены в статистическую та

Предмет математической статистики
Предметом математической статистики является анализ результатов массовых, повторяющихся измерений. Результаты таких измерений всегда более или менее отличаются друг от друга. Даже если измеряется т

Составление рядов распределения и их графические представления
В процессе наблюдения или измерения какого-либо показателя получают ряд чисел. Численные результаты подразделяют на дискретные и непрерывные. К дискретным относят число подтягиваний н

Меры центральной тенденции
Центральную тенденцию выборки позволяют оценить такие статистические характеристики, как среднее арифметическое значение, мода, медиана. Наиболее просто получаемой мерой цент

Выбор меры центральной тенденции
Вычисление моды, медианы или среднего – чисто техническая процедура. Однако выбор из этих трех мер и их интерпретация зачастую требуют определенного размышления. В процессе выбора следует установит

Характеристики вариации
К характеристикам вариации, или колеблемости, результатов измерений относят размах варьирования, дисперсию, среднее квадратическое отклонение, коэффициент вариации, стандартную ошибку

Репрезентативность выборочных показателей
Чтобы получить исчерпывающую информацию о состоянии той или иной статистической совокупности, нужно учесть весь ее состав без исключения. Однако в силу разных обстоятельств не всегда есть возможнос

Ошибки репрезентативности
Возможные отклонения выборочных показателей от их параметров в генеральной совокупности называются ошибками репрезентативности. Эти ошибки неизбежны и возникают потому, что исследов

Стандартная ошибка среднего арифметического
Чтобы судить о том, насколько точно проведенные измерения отражают состав генеральной совокупности, необходимо вычислить стандартную ошибку средней арифметической выборочной совокупности.

Показатель точности оценки параметров
Сама по себе абсолютная величина выборочной ошибки как показатель именованный мало пригодна для случаев сравнительной оценки точности, с какой определены средние результаты наблюдений по отношению

Порядок работы на II этапе
1. Ознакомиться с ситуацией и организацией игры на II этапе. 2. Ознакомиться с теоретическими сведениями. 3. Ознакомиться с образцом отчета о работе на II этапе. 4. Рассч

Графическое представление
Запишем ранжированный ряд: 131, 144, 151, 153, 154, 168, 168, 182, 189, 208. Т.к. n = 10, по таблице 2.2 находим число интервалов: k = 4. Шаг интервала:

Графическое представление
Запишем ранжированный ряд: 123, 141, 142, 150, 154, 162, 163, 167, 173, 190. Шаг интервала:

Графическое представление
Запишем ранжированный ряд: 50, 62, 66, 70, 70, 71, 74, 74, 75, 93. Шаг интервала:

Проверка расчета статистических характеристик на ЭВМ
Для ускорения процесса проверки составим таблицу. В столбцы «расч.» выпишем рассчитанные значения статистических характеристик. В столбцы «пров.» будем записывать результаты, полученные на компьюте

Оценка надежности теста для контроля за развитием скоростных качеств
Цели: 1. Ознакомиться с основами теории корреляции. 2. Ознакомиться с основами теории проверки статистических гипотез. 3. Ознакомиться с основами теории

Функциональная и статистическая взаимосвязи
В спортивных исследованиях между изучаемыми показателями часто обнаруживается взаимосвязь. Вид ее бывает различным. Например, определение ускорения по известным данным скорости, второй закон Ньютон

Корреляционное поле
Анализ взаимосвязи начинается с графического представления результатов измерений в прямоугольной системе координат. Предположим, что у шести испытуемых зарегистрирован такой показатель, как число п

Оценка тесноты взаимосвязи
Для оценки тесноты линейной взаимосвязи в корреляционном анализе используется значение (абсолютная величина) специального показателя – коэффициента корреляции. Абсолютное значение (модуль чи

Направленность взаимосвязи
Диаграмма рассеяния на рисунке 3.4, кроме сильной статистической взаимосвязи, имеет еще одну особенность – прямо пропорциональную тенденцию зависимости. Это значит, что улучшение, например,

Методы вычисления коэффициентов взаимосвязи
Величина коэффициента взаимосвязи рассчитывается с учетом шкалы, использованной для измерений. Для оценки взаимосвязи, когда измерения производят в шкале отношений или интервалов и форма в

Проверка нулевых гипотез
Для проверки выдвинутых нулевых гипотез используют специальные статистические критерии, разработанные математиками (Колмогоровым, Смирновым, Стьюдентом, Фишером, Пирсоном и др.). С

Ошибочные решения при проверке гипотез
При проверке статистической гипотезы решение экспериментатора никогда не принимается с уверенностью, т.е. всегда существует некоторый риск принять неправильное решение. Исключить на 100 % этот риск

Основные этапы проверки статистических гипотез
1. Исходя из задач исследования, формулируются статистические гипотезы. 2. Выбирается уровень значимости, на котором будут проверяться гипотезы. 3. На основе выборки, полученной и

Понятие о надежности тестов
Один и тот же тест, применяемый к одним и тем же испытуемым, должен давать в одинаковых условиях совпадающие результаты (если только не изменились сами испытуемые). Однако при самой строгой стандар

Стабильность теста
Под стабильностью теста понимают воспроизводимость результатов при его повторении через определенное время в одинаковых условиях. Повторное тестирование обычно называют ретестом. Схем

Согласованность теста
Согласованность характеризуется независимостью результатов тестирования от личных качеств лица, проводящего или оценивающего тест. Согласованность определяется по степени совпадения результа

Эквивалентность тестов
Нередко тест выбирают из определенного числа однотипных тестов. Например, броски в баскетбольную корзину можно выполнять с разных точек; спринтерский бег может проводиться на дистанции, скажем, 50,

Пути повышения надежности теста
Надежность тестов может быть повышена до определенной степени путем: а) более строгой стандартизации тестирования; б) увеличения числа попыток; в) увеличения числа оценщи

Порядок работы на III этапе
Отчет о работе на III этапе игры (образец) Тема: Оценка надежности теста для контроля за развитием скоростных качеств. Це

Корреляционное поле
Представим взаимосвязь результатов измерения теста А и ретеста Б в виде графика, для чего в прямоугольной системе координат построим корреляционное поле. Результаты теста А будем откладывать по оси

Оценка информативности теста
Цели: 1. Ознакомиться с методами оценки информативности тестов. 2. Приобрести навыки определения коэффициента информативности теста.  

Эмпирическая информативность (существует измеряемый критерий)
Идея определения эмпирической информативности состоит в том, что результаты теста сравнивают с некоторым критерием. Для этого рассчитывают коэффициент корреляции между критерием и тестом (и такой к

Эмпирическая информативность в практической работе
При практическом использовании показателей эмпирической информативности следует иметь в виду, что они справедливы лишь по отношению к тем испытуемым и условиям, для которых они рассчитаны.

Содержательная (логическая) информативность
Информативность теста не всегда может быть установлена с помощью эксперимента и статистической обработки его результатов. Например, требуется подготовить билеты для экзамена или темы дипломных рабо

Ситуация и организация игры на IV этапе
Добротным может быть признан тест, удовлетворяющий требованиям не только надежности, но и информативности. Поэтому на данном этапе «тренеру» необходимо проделать работу по оценке информативности те

Корреляционное поле
Представим взаимосвязь результатов измерения теста А и теста-критерия В в виде графика, для чего в прямоугольной системе координат построим корреляционное поле. Результаты теста А будем откладывать

Ситуация и организация игры на V этапе
На предыдущих этапах игры «тренеры» оценили надежность и информативность теста, выбранного ими для контроля развития у спортсменов скоростных качеств. В случае, если надежность и информативность те

Выбор критерия для оценки эффективности
Оценка эффективности методики тренировки, используемой спортсменами для развития скоростных качеств, сводится к сравнению средних арифметических значений двух попарно зависимых выборок: выборки, об

Доверительный интервал. Доверительная вероятность
Под термином «оценка» понимаются как сами значения параметров генеральной совокупности, полученные по выборке, так и правило, по которому они получены. При формировании интервальных оценок о

Построение доверительного интервала для оценки среднего значения генеральной совокупности
Чтобы найти границы доверительного интервала для среднего значения генеральной совокупности необходимо выполнить следующие действия: 1) по полученной выборке объема n вычислить сред

Порядок работы на V этапе
1. Проверить на нормальность распределения малую (n < 30) выборку, составленную из разностей парных значений результатов измерений исходного показателя скоростных качеств у «спортсменов» (эти ре

Проверка эффективности применявшейся методики тренировки
Для проверки эффективности методики тренировки выдвигаем гипотезы: – нулевую – H0: об отсутствии различия между средним исходным показателем скоростных к

Расчет и построение доверительного интервала для генеральной средней арифметической
Так как распределение выборки d, составленной из разностей парных значений, согласуется с нормальным законом распределения, а генеральная дисперсия di неизвестна, точные

Проверка эффективности применявшейся методики тренировки
Для проверки эффективности методики тренировки выдвигаем гипотезы: – нулевую – H0: об отсутствии различия между средним исходным показателем скоростных к

Расчет и построение доверительного интервала для генеральной средней арифметической
Так как распределение выборки d, составленной из разностей парных значений, отличается от нормального закона распределения, а генеральная дисперсия di неизвестна, прибли

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги