рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Задачи и упражнения по функциям алгебры логики

Задачи и упражнения по функциям алгебры логики - раздел Образование, УСМАНОВА Зинира Масгутовна При Оперировании С Функциями Алгебры Логики Бывают Полезны Следующие Эквивале...

При оперировании с функциями алгебры логики бывают полезны следующие эквивалентности (большинство из них называют обычно основными эквивалентностями алгебры логики). Построив таблицу для соответствующих функций, убедитесь в справедливости следующих эквивалентностей:

1. – коммутативность связки *, где символ * является общим обозначением для связок &, Ú, Å, ~, |, ¯.

2. – ассоциативность связки *, где *– общее обозначение для связок &,Ú,Å,~.

3. Дистрибутивность

а) – дистрибутивность конъюнкции относительно дизъюнкции;

б) – дистрибутивность дизъюнкции относительно конъюнкции;

в) – дистрибутивность конъюнкции относительно сложения по mod 2.

4. а); б) суть правила де Моргана;

5. а); б) суть правила поглощения;

6. а); б);

7. а); б);

в); г); д);

8. а);

б); в);

9. а); б).

 

1. Построить таблицы соответствующих функций, выяснить, эквивалентны ли формулы и :

1) , ;

2) ,

3) , ;

4) , ;

5) , ;

6) , ;

7) , ;

8) , ;

9) , ;

10) , .

Ответы: 2), 6), 9), 10) – эквивалентны; 3), 7) – не эквивалентны.

 

2. Построив таблицу для соответствующих функций, убедитесь в справедливости следующих эквивалентностей:


1) ;

2) ;

3) ;

4) ;

5) ;

6) ;

7) ;

8) ;

9) ;

10) ;

11) .


 

3. Используя приведенные выше основные эквивалентности и соотношения докажите эквивалентность формул V и U:

1), ;

2), ;

3), ;

4), ;

5), ;

6), ;

7), ;

8), ;

9), ;

10), .

Ответы:

4) ;

9)

4. Используя непосредственно определение двойственности булевых функций, а также основные эквивалентности и соотношения, выясните, является ли функция g двойственной к функции f:

1), ;

2), ;

3), ;

4), ;

5), ;

6), ;

7), ;

8), ;

9), ;

10), ;

11), ;

12), .

Ответы: 4), . Значит, g не двойственна к f. 6) – не является; 8),9),11) – является.

 

5. Используя принцип двойственности, постройте формулу, реализующую функцию, двойственную к функции f, и убедитесь в том, что полученная формула эквивалентна формуле V:

1), ;

2), ;

3), ;

4), ;

5), ;

6), ;

7), ;

8), ;

9), ;

10), .

 

Ответы:

1)

2); 5); 10).

 

6. Указать все фиктивные переменные у функции f:


1)

2)

3)

4)

5)

6)


Ответы:1)две фиктивные переменные; 3)одна фиктивная переменная; 5)фиктивные переменные x1 и x3.

 

7. Показать, что x1 – фиктивная переменная у функции f (реализовав для этой цели функцию f формулой, не содержащей явно переменную x1):

1);

2);

3);

4)5) 6)7)

8)9)10)

Ответы: 4),8),10) 9)

 

8. Выяснить, можно ли из функции f , отождествляя и переименовывая в ней переменные, получить функцию g:

1),

2),

3),

4),

5),

6),

7), ;

8), ;

9), ;

10), .

Ответы: 1),2),5),7),8),9),10)можно. 3),4),6)нельзя.

 

 

9. Представить в СДНФ следующие функции:


1);

2)

3)

4)

5)

6)

7)

8)

9)

10)


Ответы: 2); 4), 7)

 

10. Представить в СКНФ следующие функции:


1)

2)

3)

4)

5)

6)

7)

8)

9)

10)


Ответы: 1); 2); 6); 8)

 

11. С помощью эквивалентных преобразований построить ДНФ функции

:

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

Ответы:

4)

10)

 

12. Используя эквивалентные преобразования, построить КНФ функции

:

1)

2);

3)

4)

5)

6)

7)

Ответы:

1)

3)

6)

 

13. Применяя преобразования вида ипостроить из заданной ДНФ функции ее совершенную ДНФ:


1)

2)

3)

4)

5)

6)

7)

8)


Ответы:

2)

5)

 

14. С помощью преобразований вида и построить из данной КНФ функции ее совершенную КНФ:


1)

2)

3)

4)

5)

6)

7)

8)


Ответы:

1)

5)

 

15. Используя дистрибутивный закон и эквивалентности и перейти от заданной КНФ функции к ДНФ:

1)

2)

3)

4)

5)

6)

7)

Ответы:

3)

6)

16. Используя дистрибутивный закон и эквивалентности и перейти от заданной ДНФ функции к ее КНФ:


1)

2)

3)

4)

5)

6)

7)

8)


Ответы:

2)

5)

 

17. Методом неопределенных коэффициентов найти полиномы Жегалкина для следующих функций:


1)

2)

3)

4)

5)

6)

7)

8)

9)

10)


Ответы:

1) 3) 6)

10)

 

18. Методом треугольника Паскаля построить полином Жегалкина для этой функции, если:

1) 2)

3) 4)

5) 6)

7) 8)

9) 10)

Ответы:

1) 4) 7)

 

19. Представив функцию формулой над множеством связок {&, }, преобразуйте полученную формулу в полином Жегалкина функции (используя эквивалентности ):


1)

2)

3)

4)

5)

6)

7)

8)

9)

10)


Ответы:

1)

3)

9)

 

20. Построить множество всех функций, зависящих от переменных x1,x2 и принадлежащих замыканию множества А:


1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)


Ответы: 1) 2) 3)

4) 5) 6)

 

21. Покажите, что , выразив формулой над множеством А:


1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)


Ответы: 1) 2) 3) 4) 5) 6) 7)

 

22. Выписать все попарно неконгруэнтные функции , принадлежащие замыканию множества А:

1) 2) 3) 4)

5) 6) 7) 8) 9) 10)

Ответы: 1) 2) 3) 4) 5)

 

23. Из полной для класса [A] системы выделить базис:

1) 2) 3) 4)

5) 6)

7) 8)9) 10)

Ответы: 1) 2) 3) 4)5)

 

24. Сведением к заведомо полным системам в P2 показать, что множество А является полной системой в P2:


1)

2)

3)

4)

5)

6)

7)

8)

9)

10)


 


Ответы: 1)система является полной в P2, поскольку всякая может быть представлена в виде ДНФ или КНФ. С другой стороны,

2) имеем Система полна, поскольку

3) имеем ;

4) имеем ;

5) имеем ;

 

25. Выяснить, является ли функция f самодвойственной:


1)

3)

5)

7)

2)

4)

6)

8)


9)

11)

13)

15)

10)

12)14)


 


Ответы: 1),3),4),8),10) – является; 2),5),6),7),9) – не является.

 

26. Выяснить, является ли самодвойственной функция f, заданная векторно:


1)

3)

5)

7)

9)

11)

13)

15)

 

2)

4)

6)

8)

10)

12)

14)

 

 


Ответы: 1),3),5),6),7),8) – является; 2),4),9),10) – не является.

 

27. Выяснить, является ли множество А самодвойственным:


1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)


Ответы: 1),3),5-7),10) – является; 2),4),8),9) – не является.

 

28. Представив функцию f полиномом, выяснить, является ли она линейной:


1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)


Ответы: 2),3),5),6),8),9)–является. 1),4),7),10)–не является.

 

29. Выяснить, является ли линейной функция f, заданная векторно:


1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)


Ответы: 1),3),4),5),7),8),9),10) – является; 2),6) – не является.

 

30. Доказать, что система А полна в L. Выяснить, является ли система A базисом в L:


1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)


Ответы: 1)с помощью суперпозиции из функции можно получить любую функцию вида , путем подстановки 1-любую функцию вида Система А является базисом;

2),3),4),5),7),8),9) – является; 6),10) – не является.

 

31. Выяснить, принадлежит ли функция f множеству T1T0:


1)

– Конец работы –

Эта тема принадлежит разделу:

УСМАНОВА Зинира Масгутовна

АХМЕТОВА Наиля Абдулхамитовна УСМАНОВА Зинира... Замыкание и замкнутые классы...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Задачи и упражнения по функциям алгебры логики

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

УСМАНОВА Зинира Масгутовна
    Дискретная математика Функции алгебры логики Учебное пособие   Редактор Г.Р. Орлова

Редакционно – издательский комплекс УГАТУ
450000, Уфа-центр, ул. К. Маркса, 12     Содержание Введение ………………………………………………………...............3 1. Элементы комбинаторики ……………………………………...

Перестановки. Размещения. Сочетания
  Пусть есть некоторое конечное множество элементов U={a1, a2, ..., an}. Рассмотрим набор элементов

Элементарные функции алгебры логики
Обозначения: E2={0,1}; Е= E

Теорема о замене подформул на эквивалентные
  Пусть NÎ<M> и имеет вид: N(x1, ..., xn) = g(G1, ...Gi, ...,Gm

Некоторые свойства элементарных функций
  1. Идемпотентность & и Ú: х&x=x , xÚx=x. 2. Коммутативность &,Ú,Å,|,~,

Принцип двойственности
Определение 1. Функции f*(x1, ..., xn) называется двойственной к функции f(x1, ..., xn

Принцип двойственности
Теорема: Пусть функция h(x1, ..., xn) реализована формулой h(x1, ..., xn) = =g

Лемма о несамодвойственной функции
  Подстановкой функций и

Разложение булевой функции по переменным
Обозначим xs= Посмотрим, чему равно xs при разных

Теорема о разложении функции по переменным
  Пусть f(x1, ..., xn) Î P2.

Полные системы
1. P2 – полная система. 2. Система M={x1&x2, x1Úx2,

Теорема Жегалкина
  Каждая функция из может быть представлена в виде полинома Жегалкина единственны

Составим критериальную таблицу для другой полной системы функций из Р2: {0, 1, x1x2, x1Åx2}.
  Т0 Т1 L M S + -

Теорема о достаточности четырех функций.
Из любой полной в Р2 системы функций можно выделить полную подсистему, состоящую не более чем из четырех функций. Доказательство. Пусть {f

Минимизация нормальных форм
Минимальной ДНФ (МДНФ) функции f(x1, ... ,xn) называется ДНФ, реализующая функцию f и содержащая минимальное число символов пе

Алгоритм Квайна построения сокращенной ДНФ.
1. Получить СДНФ функции f. 2. Провести все операции неполного склеивания. 3. Провести все операции поглощения. Пример 1. Построим сокращенную

Метод Блейка
Метод Блейка для построения сокращенной ДНФ из произвольной ДНФ состоит в применении правил обобщенного склеивания и поглощения. Подразумевается, что правила применяются слева направо. На первом эт

Алгоритм построения сокращенной ДНФ с помощью КНФ
(метод Нельсона) Пусть f(x1, … , xn) есть некоторая функция алгебры логики. Построим для f некоторую КНФ. Осуществим дале

Построение всех тупиковых ДНФ.
Пусть f(x1, …, xn) есть функция алгебры логики. 1. Построим СДНФ функции f, и пусть P1, P2, …,P

Минимизация частично определенных функций
Пусть функция f(x1,…,xn) частично (не всюду) определена. Если f не определена на p наборах из 0 и 1, то существует 2p возм

Метод минимизирующих карт Карно
  При построении сокращенных ДНФ для функций, зависящих от небольшого числа (не более 4) переменных, используется метод карт Карно. Построение карт Карно основано на свойствах булева

Задачи по минимизации и доопределению булевых функций
1. Из заданного множества А элементарных конъюнкций выделить простые импликанты функции f : 1) A =

Задачи по алгебре высказываний
1.Записать следующие высказывания в виде пропозициональных форм, употребляя пропозициональные буквы для обозначения атомарных высказываний, т.е. таких высказываний, которые не пост

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги