рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Элементарные функции алгебры логики

Элементарные функции алгебры логики - раздел Образование, УСМАНОВА Зинира Масгутовна Обозначения: E2={0,1}; Е...

Обозначения: E2={0,1}; Е= E2´E2´...´E2 – прямое произведение n сомножителей; (x,..,xnE2, | E2| – мощность E2, |E2|=2, тогда |Е|=2n.

Определение 1. Функцией алгебры логики называется закон, осуществляющий отображение ЕE2, причем отображение всюду определено и функционально.

Так как множество Еконечно, то задать отображение ЕÞ E2, означает задать множество наборов из Еи для каждого набора указать его образ в Е 2.

Пример 1. Пусть n=2, тогда Е={(0 0),(0 1),(1 0),(1 1)}, отображение ЕÞ E2 задано, например, так: (0 0) Þ0 ; (0 1) Þ1; (1 0) Þ1 ; (1 1) Þ1.

Тем самым задана функция, для которой мы будем использовать стандартное обозначение f(x1,x2), записывая эту функцию в виде таблицы:

x1 x2 f(x1,x2)

Здесь x1 и x2 обозначают названия столбцов, а f – символ, обозначающий отображение. Следует обратить внимание, что функции f(x1,x2) и f(y1,y2) задают одно и то же отображение, и их таблицы отличаются только названиями столбцов.

Определение 2.Таблица, задающая функцию f(x1,x2,...,xn), называется таблицей истинности для этой функции.

Рассмотрим функции одной переменной. Их будет всего 4, они задаются следующими таблицами истинности:

x f0(x)
   

функция называется константой 0, записывается f0(x)0;

x f1(x)

функция называется тождественной, записывается f1(x)= x;

x f2(x)

функция называется «не x» и записывается f2 (x)= ;

x f3(x)

функция записывается f3(x)1 и называется константой 1. Если стандартным расположением переменной x считать 0 в первой строке и 1 во второй, то функции f0, f1, f2, f3 определяются однозначно наборами значений: f0=(0,0), f1=(0,1), f2=(1,0) и f3=(1,1). Наборы значений функций составляют множество E2´Е2, поэтому количество функций одной переменной равно |E2E2|=4. Для удобства функции пронумерованы так, что двоичный код номера совпадает с набором значений функции.

Рассмотрим функции двух переменных f(x1,x2). Функции двух переменных определены на множестве Е={(0 0),(0 1),(1 0),(1 1)}, эти наборы переменных из Е можно тоже рассматривать как двоичные коды чисел 0,1,2,3, именно такой порядок расположения наборов (x1,x2) будем считать стандартным. Тогда функции f(x1,x2) определяются однозначно наборами значений (b1, b2, b3, b4), где каждое biÎE2, поэтому (b1, b2, b3, b4Е. Следовательно, число функций двух переменных равно 24=16, занумеруем их числами от 0 до 15 так, чтобы двоичный код номера совпадал с набором значений функции.

x1 x2 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15
0 0 0 1 1 0 1 1

Некоторые из этих функций носят специальные названия и играют такую же роль, как элементарные функции в анализе, поэтому называются элементарными функциями алгебры логики. Перечислим их.

1) f1(x1,x2) = (x1&x2), читается «конъюнкция х1 и х2», иногда вместо знака & употребляют знак или вообще его опускают, пишут (х1х2). (х1&х2) совпадает с обычным произведением х1х2 и совпадает с min(x1,x2). Эту операцию называют также логическим умножением.

2) f6(x1,x2) = (x1Åx2) – сложение х1 и х2 по модулю два, иногда пишут (х1+х2)mod2.

3) f7(x1,x2) = (x1Úx2), читается «х1 дизъюнкция х2», она совпадает с max(x1,x2), ее называют логическим сложением.

4) f8(x1,x2) = (x1x2), читается «х1 стрелка Пирса х2» и совпадает с отрицанием дизъюнкции, другие названия: функция Вебба, функция Даггера.

5) f9(x1,x2) = (x1~x2), читается «х1 эквивалентно х2».

6) f13(x1,x2) =( x1x2), читается «х1 импликация х2», иногда обозначается (х1Éх2), т. е. х1 влечет х2 .

7) f14(x1,x2) = (x1|x2), читается «х1 штрих Шеффера х2», она является отрицанием конъюнкции.

Cимволы ,&,Ú,,~,,Å,|, участвующие в обозначениях элементарных функций, называются логическими связками или просто связками. Переменные 0 и 1 называются логическими или булевыми переменными, причем 0 соответствует «лжи» , а 1 – «истине», а функции алгебры логики называются еще и блевыми функциями.

Рассмотрим функции f(x1...xn), где (x1...xnЕ, тогда число наборов (x1...xn),где функция f(x1...xn) должна быть задана, равно |Е|=2n. Обозначим множество всех функций двузначной алгебры логики Р2. Обозначим через Р2(n) число функций, зависящих от n переменных. Очевидно, Р2(n)=22 n.

С ростом n число Р2(n) быстро растет: P2(1)=4, P2(2)=16, P2(3)=256, P2(4)=65536 . При больших n табличный способ задания функций становится неприемлемым, используется формульное задание функций. Но прежде чем ввести понятие формулы, дадим определение существенной переменной.

Определение 3. Функция f(x1,...,xi–1,xi,xi+1,...,xn) существенно зависит от хi, если существуют такие значения a1, ...ai–1, ai+1, ...an переменных x1, ...xi–1, xi+1, ...xn, что f(a1, ...ai–1, 0, ai+1...anf(a1...ai–1, 1, ai+1...an) . Тогда переменная хi называется существенной переменной. В противном случае хi называется фиктивной переменной.

– Конец работы –

Эта тема принадлежит разделу:

УСМАНОВА Зинира Масгутовна

АХМЕТОВА Наиля Абдулхамитовна УСМАНОВА Зинира... Замыкание и замкнутые классы...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Элементарные функции алгебры логики

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

УСМАНОВА Зинира Масгутовна
    Дискретная математика Функции алгебры логики Учебное пособие   Редактор Г.Р. Орлова

Редакционно – издательский комплекс УГАТУ
450000, Уфа-центр, ул. К. Маркса, 12     Содержание Введение ………………………………………………………...............3 1. Элементы комбинаторики ……………………………………...

Перестановки. Размещения. Сочетания
  Пусть есть некоторое конечное множество элементов U={a1, a2, ..., an}. Рассмотрим набор элементов

Теорема о замене подформул на эквивалентные
  Пусть NÎ<M> и имеет вид: N(x1, ..., xn) = g(G1, ...Gi, ...,Gm

Некоторые свойства элементарных функций
  1. Идемпотентность & и Ú: х&x=x , xÚx=x. 2. Коммутативность &,Ú,Å,|,~,

Принцип двойственности
Определение 1. Функции f*(x1, ..., xn) называется двойственной к функции f(x1, ..., xn

Принцип двойственности
Теорема: Пусть функция h(x1, ..., xn) реализована формулой h(x1, ..., xn) = =g

Лемма о несамодвойственной функции
  Подстановкой функций и

Разложение булевой функции по переменным
Обозначим xs= Посмотрим, чему равно xs при разных

Теорема о разложении функции по переменным
  Пусть f(x1, ..., xn) Î P2.

Полные системы
1. P2 – полная система. 2. Система M={x1&x2, x1Úx2,

Теорема Жегалкина
  Каждая функция из может быть представлена в виде полинома Жегалкина единственны

Составим критериальную таблицу для другой полной системы функций из Р2: {0, 1, x1x2, x1Åx2}.
  Т0 Т1 L M S + -

Теорема о достаточности четырех функций.
Из любой полной в Р2 системы функций можно выделить полную подсистему, состоящую не более чем из четырех функций. Доказательство. Пусть {f

Задачи и упражнения по функциям алгебры логики
При оперировании с функциями алгебры логики бывают полезны следующие эквивалентности (большинство из них называют обычно основными эквивалентностями алгебры логики). Построив таблицу для соответств

Минимизация нормальных форм
Минимальной ДНФ (МДНФ) функции f(x1, ... ,xn) называется ДНФ, реализующая функцию f и содержащая минимальное число символов пе

Алгоритм Квайна построения сокращенной ДНФ.
1. Получить СДНФ функции f. 2. Провести все операции неполного склеивания. 3. Провести все операции поглощения. Пример 1. Построим сокращенную

Метод Блейка
Метод Блейка для построения сокращенной ДНФ из произвольной ДНФ состоит в применении правил обобщенного склеивания и поглощения. Подразумевается, что правила применяются слева направо. На первом эт

Алгоритм построения сокращенной ДНФ с помощью КНФ
(метод Нельсона) Пусть f(x1, … , xn) есть некоторая функция алгебры логики. Построим для f некоторую КНФ. Осуществим дале

Построение всех тупиковых ДНФ.
Пусть f(x1, …, xn) есть функция алгебры логики. 1. Построим СДНФ функции f, и пусть P1, P2, …,P

Минимизация частично определенных функций
Пусть функция f(x1,…,xn) частично (не всюду) определена. Если f не определена на p наборах из 0 и 1, то существует 2p возм

Метод минимизирующих карт Карно
  При построении сокращенных ДНФ для функций, зависящих от небольшого числа (не более 4) переменных, используется метод карт Карно. Построение карт Карно основано на свойствах булева

Задачи по минимизации и доопределению булевых функций
1. Из заданного множества А элементарных конъюнкций выделить простые импликанты функции f : 1) A =

Задачи по алгебре высказываний
1.Записать следующие высказывания в виде пропозициональных форм, употребляя пропозициональные буквы для обозначения атомарных высказываний, т.е. таких высказываний, которые не пост

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги