рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Физическое и математическое определение устойчивости.

Физическое и математическое определение устойчивости. - раздел Образование, Основные понятия и определения Система Автоматического Регулирования Называется Устойчивой, Если После Сняти...

Система автоматического регулирования называется устойчивой, если после снятия возмущающего воздействия, которое вывело её из состояния равновесия, она вновь возвращается в состояние равновесия. Если система не возвращается в состояние равновесия после снятия возмущения, она неустойчива.

устойчивая система (кривые 1, 2)

 

неустойчивая (3).

 

Для определения математического условия устойчивости САР необходимо решить дифференциальное уравнение системы, когда правая часть этого уравнения равна 0 (при снятии возмущающего воздействия),и посмотреть, как ведет yвых (t)при t ® ¥.

Пусть

Тогда дифференциальное уравнение системы в операторной форме:

αnpny(p) + ... + α1py(p) + αoy(p) = bmpmx(p) + ... + b1px(p) + box(p)

Оригинал дифференциального уравнения:

Для определения устойчивости системы, описываемой этим уравнением, снимем возмущения x(t)=0 и решим уравнение:

Для этого запишем характеристическое уравнение:

H(p) = αnpn + .... + α1p + αo = 0.

Как видно из последнего выражения, характеристическое уравнение звена или системы – это знаменатель передаточной функции звена или системы, приравненный к нулю.

Если p1, p2, ..., pn – корни характеристического уравнения, то решение этого уравнения имеет вид:

где Ci – постоянные интегрирования, определяемые из начальных условий.

Рассмотрим отдельные случаи решения дифференциального уравнения:

1) p1, p2, ..., pn – отрицательные действительные корни: pi = -ai. Решение уравнения в этом случае:

.

 

2) p1, p2, ..., pn - положительные действительные корни: pi = +ai.

– решение уравнения в этом случае

 

 

 
 


.

 

 

3) p1, p2, ..., pn - корни комплексно-сопряженные с отрицательной вещественной частью:

 

pi = – ai ± jbi .

 
 

 

 


4) p1, p2, ..., pn – корни комплексно-сопряженные с положительной вещественной частью:

pi = + ai ± jbi

 

       
 
   
 

 

 


Анализируя все случаи решения дифференциального уравнения для случая x(t) = 0, можно сделать вывод:

система автоматического регулирования устойчива, если все корни ее характеристического уравнения отрицательные действительные или комплексно-сопряженные с отрицательной действительной частью. Если же среди корней характеристического уравнения системы имеется хотя бы один положительный действительный корень или хотя бы одна пара комплексно-сопряженных корней с положительной вещественной частью, такая система неустойчива.

Математические правила, позволяющие определить знаки корней алгебраического (характеристического) уравнения, не решая это уравнение, в ТАУ называют критериями устойчивости.

 

– Конец работы –

Эта тема принадлежит разделу:

Основные понятия и определения

Введение... Содержание и задачи курса... Основные понятия и определения Принципы регулирования...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Физическое и математическое определение устойчивости.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Принципы регулирования.
В зависимости от способов формирования регулирующего воздействия различают следующие принципы регулирования: - принцип по возмущению; - принцип по отклонению регулируемой величины

Элементы линейной теории автоматического регулирования
  После выбора элементов функциональной схемы требуется произвести ее расчет с целью обеспечения заданных показателей качества работы САР. Этим занимается линейная теория автоматическ

Модели статики. Понятие о линейных элементах. Линеаризация реальных элементов САР, её способы и предпосылки.
  Статикой называется установившийся режим звена или системы, при котором входной и выходной сигналы звена (или системы) постоянны во времени. Поведение звена (системы) в ста

Динамические характеристики линейных элементов и систем: переходные и весовые функции; частные характеристики, их применение и получение.
  Динамика – в общем, философском смысле слова, движение. В динамике выходная величина звена (системы) изменяется во времени вследствие изменения входной величины. Связь между входным

Безинерционные (усилительные или статические) звенья.
К безинерционным звеньям относят элементы, которые в динамике описываются дифференциальным уравнением нулевого порядка вида yвых(t) = kхв

Инерционное звено первого порядка.
В динамике описывается дифференциальным уравнением первого порядка, которое может быть приведено к виду: (1)

Идеальное дифференцирующее звено.
Дифференциальное уравнение звена: (1) Уравнение в операторной фо

Идеальное интегрирующее звено.
Дифференциальное уравнение звена: Уравнение в операторной форме: pyвых(p) = kx

Инерциальное звено второго порядка. Колебательное звено.
Дифференциальное уравнение инерционного звена второго порядка: в операторной форме: Т

Последовательное соединение звеньев.
При последовательном соединении выходная величина каждого предшествующего звена является входным воздействием последующего звена.   &nb

Параллельное соединение звеньев.
При параллельном соединении на вход всех звеньев подается один и тот же сигнал, а выходящие величины алгебраически складываются:

Звено, охваченное обратной связью.
Звено охвачено обратной связью, если его выходной сигнал через какое-либо другое звено подается на выход.

Определение передаточных функций разомкнутой и замкнутой системы.
Пусть исследуемая система имеет следующую структурную схему:     &

Статика САР. Способы уменьшения статизма.
Описания линейной системы в статике можно получить, зная передаточную функцию системы. Поскольку

Алгебраический критерий Гурвица.
Алгебраические критерии устойчивости позволяют судить об устойчивости системы по коэффициентам характеристического уравнения. Система автоматического регулирования устойчива, если все коэф

Частотный критерий Михайлова.
Частотные критерии устойчивости позволяют судить об устойчивости систем автоматического управления по виду их частотных характеристик. Пусть характеристическое уравнение системы имеет вид:

Частотный критерий Найквиста.
  Этот критерий позволяет судить об устойчивости замкнутых САР по амплитудно-фазовой характеристике разомкнутой САР. Замкнутая САР устойчива, если устойчива разомкнута

Автоматического регулирования.
  Пусть структурная схема САР имеет вид:      

Влияние этого звена на динамику системы рассмотрим на амплитудно–фазо–частотных характеристиках, исходной и скорректированной систем.
Пусть а АФЧХ скорре

Охват инерциального звена жёсткой отрицательной обратной связью.
    &nb

Охват интегрирующего звена жёсткой отрицательной обратной связью.
      &

Обратной связью.
     

Преобразовательные элементы.
Корректирующие устройства систем регулирования осуществляют преобразование сигнала управления. С этой целью их составляют из элементов, которые удобно называть преобразовательными. Используются эле

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги