рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Графический метод решения

Графический метод решения - раздел Образование, Методы оптимальных решений Графический Метод Используется Для Решения Задач С Двумя Переменными Следующе...

Графический метод используется для решения задач с двумя переменными следующего вида:

 

 

 

Данный метод основывается на возможности графического изображения области допустимых решений задачи и нахождения среди них оптимального решения.

Область допустимых решений задачи строится как пересечение (общая часть) областей решений каждого из заданных ограничений. Областью решений линейного неравенства является одна из двух полуплоскостей, на которые прямая , соответствующая данному неравенству, делит всю координатную плоскость. Для того, чтобы определить, какая из двух координатных полуплоскостей является областью решений, достаточно координаты какой-либо точки, не лежащей на прямой, подставить в неравенство: если оно удовлетворяется, то областью решений является полуплоскость, содержащая данную точку, если же неравенство не удовлетворяется, то областью решений является полуплоскость, не содержащая данную точку. Областью допустимых решений задачи является общая часть полуплоскостей – областей решений всех неравенств системы ограничений.

Для нахождения среди допустимых решений оптимального решения используют линии уровня и опорные прямые.

Линией уровня называется прямая, на которой целевая функция задачи принимает постоянное значение. Уравнение линии уровня в общем случае имеет вид , где . Все линии уровня параллельны между собой. Их нормаль .

Опорной прямой называется линия уровня, которая имеет хотя бы одну общую точку с областью допустимых решений и по отношению к которой эта область находится в одной из полуплоскостей.

Область допустимых решений любой задачи имеет не более двух опорных прямых, на одной из которых может находится оптимальное решение.

Значения целевой функции на линиях уровня возрастают, если линии уровня перемещать в направлении их нормали, и убывают при перемещении линий уровня в противоположном направлении.

Алгоритм графического метода решения задачи линейного программирования:

1. Построить область допустимых решений.

2. Если область допустимых решений является пустым множеством, то задача не имеет решения ввиду несовместности системы ограничений.

3. Если область допустимых решений является непустым множеством, построить нормаль линий уровня и одну из линий уровня, имеющую общие точки с этой областью.

4. Линию уровня переместить до опорной прямой в задаче на максимум в направлении нормали, в задаче на минимум – в противоположном направлении.

5. Если при перемещении линии уровня по области допустимых решений в направлении, соответствующем приближению к экстремуму целевой функции, линии уровня уходят в бесконечность, то задача не имеет решения ввиду неограниченности целевой функции.

6. Если задача линейного программирования имеет оптимальное решение, то для его нахождения решить совместно уравнения прямых, ограничивающих область допустимых решений и имеющих общие точки с соответствующей опорной прямой. Если целевая функция задачи достигает экстремума в двух угловых точках, то задача имеет бесконечное множество решений. Оптимальным решением является любая выпуклая линейная комбинация этих точек. После нахождения оптимального решения вычислить значение целевой функции в этой точке.

Пример. Решить задачу линейного программирования

 

Решение. Строим область допустимых решений задачи. Нумеруем ограничения задачи. В прямоугольной декартовой системе координат (см. рис. на стр. 10) строим прямую 2 , соответствующую ограничению (1). Находим, какая из двух полуплоскостей, на которые эта прямая делит всю координатную плоскость, является областью решений неравенства (1). Для этого достаточно координаты какой-либо точки, не лежащей на прямой, подставить в неравенство. Так как данная прямая не проходит через начало координат, подставляем координаты точки О(0,0) в первое ограничение . Получим неравенство . Следовательно, точка О не лежит в полуплоскости решений. Таким образом, стрелки на концах данной прямой должны быть направлены в полуплоскость, не содержащую точку О. Аналогично строим прямые , и области решений ограничений (2) и (3). Находим общую часть полуплоскостей, учитывая при этом условие неотрицательности переменных. Полученную область допустимых решений отметим на рис. штриховкой.

Строим нормаль линий уровня и одну из этих линий, например . Так как решается задача на отыскание максимума целевой функции, то линию уровня перемещаем в направлении нормали до опорной прямой. Эта прямая проходит через точку пересечения прямых, ограничивающих область допустимых решений и соответствующих неравенствам (2) и (3). Определяем координаты точки , решая систему .Получим . Подставляя найденные значения переменных в целевую функцию, получим .

 

 

 
 
(1)
(2)
(3)
 
 

 

 

Ответ: .

 

– Конец работы –

Эта тема принадлежит разделу:

Методы оптимальных решений

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ... ТЕХНОЛОГИЙ И УПРАВЛЕНИЯ имени К Г Разумовского... образован в году...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Графический метод решения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Методы оптимальных решений
www.mgutm.ru Москва 2011 УДК 519.8    

Рабочая программа
I. Основные понятия. 1. Системное описание процесса принятия решений. 2. Альтернативы. Критерии. 3. Математическая модель задачи принятия решений.  

Математическая модель задачи принятия решения (ЗПР)
Для построения математической модели задачи принятия решения необходимо задать следующие три множества: Х - множество допустимых альтернатив, Y – множество возможных состояний сре

ЗПР в условиях определенности
При принятии решения в условиях определенности состояние среды является фиксированным и оно известно принимающему решение. В этом случае исход однозначно определяется выбором альтернативы, поэтому

Симплексный метод
Симплексный метод основывается на следующем: - область допустимых решений задачи линейного программирования является выпуклым множеством с конечным числом угловых точек, т.е. многограннико

Принятие решения в условиях неопределенности
Принятие решения в условиях неопределенности характеризуется тем, что при выборе альтернативы принимающему решение неизвестно наличное состояние среды. Эта неопределенность не является абсолютной,

Решение.
1. Критерий Лапласа. L(А1)= ( 7+5+1+10 ) = ;   L(А

Принятие решения в условиях риска
Принятие решения в условиях риска характеризуется тем, что поведение среды имеет случайный характер, причем в этой случайности имеются закономерности стохастического типа. Как известно из

Элементы теории игр
В практической деятельности весьма часто приходится рассматривать явления и ситуации, в которых участвуют две или более стороны, имеющие различные интересы и обладающие возможностями применения для

Матричная игра
Проиллюстрируем сказанное на примере одного из самых простых, но одновременно и наиболее изученных классов игр, на так называемых матричных играх. Исследование матричных игр интересно еще и потому,

Биматричная игра
Часто встречаются ситуации, в которых интересы игроков хотя и не совпадают, но уже не обязательно являются противоположными. Рассмотрим конфликтную ситуацию, в которой каждый из двух участ

Задача № 5.
Фирма может выпускать продукцию одного из шести видов: 1,2,3,4,5,6. Глава фирмы должен принять решение, какой из шести видов продукции выпускать в течение предстоящего летнего сезона. Предполагаетс

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги