рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Имитация функционирования системы.

Имитация функционирования системы. - раздел Образование, Общие вопросы моделирования   Предположим, Иссле...

 

Предположим, исследуется вычислительная система (ВС), состоящая из процессора 1 с основной памятью, устройство вода перфокарт 4, АЦПУ 2 и дисплея 3 (рис. 4.1.).

Рис. 4.1. Упрощённая схема моделируемой системы.

Через устройство 4 поступает поток заданий Х1. Процессор обрабатывает задания и результаты выдаёт на АЦПУ 2. Одновременно с этим ВС используется, например, как информационно-справочная система. Оператор-пользователь, работающий за дисплеем, посылает в систему запросы Х2, которые обрабатываются процессором и ответы выводятся на экран дисплея. Процессор работает в 2-х программном режиме: в одном разделе обрабатываются задания Х1, в другом, с более высоким относительным приоритетом запросы Х2. Представим данную ВС в упрощённом варианте в виде стохастической сети из 4-х СМО. Потоки заданий и запросы будем называть потоками заявок. Считаем потоки Х1 и Х2 независимыми. Известны ф.р. периодов следования заявок t1 и t2 и длительность обслуживания Т, T заявок в к-ом устройстве. Требуется определить времена загрузки каждого устройства и времена реакции по каждому из потоков.

Вначале определяется момент поступления в систему 1-ой заявки потока Х1 по результатам случайного испытания в соответствии с ф.р. периода следования заявок.

Рис. 4.2. Временная диаграмма функционирования ВС.

На рис. 2 это момент времени t1=0+t11 (здесь и далее верхний индекс обозначает порядковый номер заявки данного потока). То же самое делается для потока Х2. На рис.2 момент поступления 1-ой заявки потока Х2 t2=0+t21. Затем находится минимальное время, т.е. наиболее раннее событие. В примере это время t1. Для 1-ой заявки потока Х1определяется время обслуживания устройством ввода перфокарт Т114 методом случайного испытания и отмечается момент окончания обслуживания t4=t1+ Т114. На рис. показан переход устройства 4 в состояние "занято". Одновременно определяется момент поступления следующей заявки потока Х1: t12=t1+t12. Следующее минимальное время это момент поступления заявки потока Х2 - t2. Для этой заявки находится время обслуживания на дисплее Т123 и отслеживается время окончания обслуживания t3=t2+ Т123 . Определяется момент поступления второй заявки потока Х2: t7=t2+t22 . Снова выбирается минимальное время — это t3. В этот момент заявка потока Х2 начинает обрабатываться процессором. По результату случайного испытания определяется время её обслуживания T121 и отмечается момент t5=t3+ T121 окончания обслуживания. Следующее минимальное время t4 - момент завершения обслуживания заявки потока Х1 устройством 4. С этого момента заявка может начать обрабатываться процессором, но он занят обслуживанием потока Х2. Тогда заявка потока Х1 переходит в состояние ожидания, становиться в очередь. В следующий момент времени t5 освобождается процессор. С этого момента процессор начинает обрабатывать заявку потока Х1, а заявка потока Х2 переходит на обслуживание дисплеем, т.е. ответ на запрос пользователя передаётся из основной памяти в буферный накопитель дисплея. Далее определяются соответствующие времена обслуживания: T111 и T123 и отмечаются моменты времени t9=t5+ T111 и t6=t5+ T123. В момент t6 полностью завершается обработка первой заявки потока Х2. По разности времени t6 и t2 вычисляется время реакции по этой заявке u12= t6- t2. Следующий минимальный момент t7 - это наступление 2-ой заявки потока Х2. Определяет время поступления очередной заявки этого потока t15= t7+t23. Затем вычисляется время обслуживания 2-ой заявки на дисплее T223 и отмечается момент t8=t7+ T223, после чего заявка становится в очередь, т.к. процессор занят. Эта заявка поступит на обслуживание в процессор только после его освобождения в момент t9 . В этот момент заявка потока Х1 начинает обслуживаться в АЦПУ. Определяются времена обслуживания Т221 и Т112 по результатам случайных испытаний и отмечаются моменты окончания обслуживания t11= t9223 и t10= t9112. В момент времени t10 завершается полное обслуживание 1-ой заявки потока Х1. Разность между этим моментом и моментом времени t1 даёт 1-ое значение времени реакции по потоку Х1 u11= t10- t1.

Указанные процедуры выполняются до истечения времени моделирования. В результате получается некоторое количество (выборка) случайных значений времени реакции (u1) и (u2) по 1-ому и 2-ому потокам. По этим значениям могут быть определены эмпирические функции распределения и вычислены количественные вероятностные характеристики времени реакции. В процессе моделирования можно суммировать продолжительности занятости каждого устройства обслуживанием всех потоков. Например, на рис. 2 занятость процессора 1 выделена заштрихованными ступеньками. Если результаты суммирования разделить на время моделирования, то получатся коэффициенты загрузки устройств.

Можно определить время ожидания заявок в очереди, обслуженных системой, среднюю и максимальную длину очереди заявок к каждому устройству, требуемая ёмкость памяти и др.

Имитация даёт возможность учесть надёжностные характеристики ВС. В частности, если известны времена наработки на отказ и восстановления всех входящих в систему устройств, то определяются моменты возникновения отказов устройств в период моделирования и моменты восстановления. Если устройство отказало, то возможны решения:

- снятие заявки без возврата;

- помещение заявки в очередь и дообслуживание после восстановления;

- поступление на повторное обслуживание из очереди;

5. Обобщённые алгоритмы имитационного моделирования.

– Конец работы –

Эта тема принадлежит разделу:

Общие вопросы моделирования

Классификация моделей... Физические модели В основу классификации положена степень абстрагирования... Ф М обычно называют систему эквивалентную или подобную оригиналу но возможно имеющую другую физическую природу...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Имитация функционирования системы.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Предмет теории моделирования.
Моделирование - это замещение одного объекта (оригинала) другим (моделью) и фиксация и изучение свойств модели. Замещение производится с целью упрощения, удешевления, ускорения изучения свой

Роль и место моделирования в исследовании систем.
Познание любой системы (S) сводится по существу к созданию её модели. Перед изготовлением каждого устройства или сооружения разрабатывается его модель - проект. Любое произведение искусства являетс

Основные подходы к построению ММ систем.
Исходной информацией при построении ММ процессов функционирования систем служат данные о назначении и условиях работы исследуемой (проектируемой) системы S. Эта информация определяет основную цель

Непрерывно детерминированные модели (Д - схемы).
Рассмотрим особенности непрерывно детерминированного подхода на примере, используя в качестве ММ дифференциальные уравнения. Дифференциальными уравнениями называются такие уравнения

Методы теории массового обслуживания.
Предмет ТМО — системы массового обслуживания (СМО) и сети массового обслуживания. Под СМО понимают динамическую систему, предназначенную для эффективного обслуживания случайного потока заявок при о

Процедура имитационного моделирования.
Определение метода имитационного моделирования. Метод ИМ заключается в создании логико-аналитической (математической модели системы и внешних воздействий), имитации функционирования системы,

Алгоритм моделирования по принципу особых состояний.
Оно использовалось в приведённом выше примере. В качестве событий выделены: - поступление заявки в систему; - освобождение элемента после обслуживания заявки; - завершени

Алгоритм моделирования по принципу Dt.
Укрупнённая схема моделирующего алгоритма, который реализует принцип постоянного приращения модельного времени (принципа Dt), представлен на следующем рисунке:

Измеряемые характеристики моделируемых систем.
При имитационном моделировании можно измерять значения любых характеристик, интересующих исследователя. Обычно по результатам вычислений определяются характеристики всей системы, каждого потока и у

Построение гистограммы для стационарной системы.
Г - эмпирическая плотность распределения вероятностей. Задаются границы изменения интересующей характеристики. уi®[yн;ув], числом интервалов Ng. Определя

Рассмотрим особенности моделирования случайных событий.
Пусть имеются случайные числа xi, т.е. возможные значения случайной величины x, равномерно распределённой в интервале {0,1}. Необходимо реализовать случайное событие А, наступающее с зад

Преобразование случайных величин.
Дискретная случайная величина h принимает значения y1£ y2 y3… yl с вероятностями P1, P2…, Pl составляющими диффере

Вычисление непрерывных случайных величин.
Непрерывная случайная величина h задана интегральной функцией распределения: , где

Блочные иерархические модели процессов функционирования систем
Рассмотрим машинную модель Mm, системы S как совокупность блоков {mi}, i=1,2…n. Каждый блок модели можно охарактеризовать конечным набором возможных состояний {Z0},

Особенности реализации процессов с использованием Q-схем
При моделировании Q-схем следует адекватно учитывать как связи, отражающие движения заявок (сплошные линии) так и управляющие связи (пунктирные линии). Рассмотрим фрагмент Q-схемы (Рис. 8.

Построение и реализация моделирующих алгоритмов Q-схем
Прежде чем использовать какой либо язык для моделирования Q-схемы, необходимо глубже вникнуть в суть процесса построения и реализации М.А. Пример. Рассмотрим Q-схему (Рис. 8.4.):

Моделирование систем и языки программирования.
Большое значение при реализации модели на ЭВМ имеет вопрос правильного выбора языка программирования. Язык программирования должен отражать внутреннюю структуру понятий при описании широко

Язык программирования GPSS
Этот язык с 1968 года входит в математическое обеспечение машин фирмы IBM, один из наиболее популярных языков ИМ. Общие сведения. GPSS составлен из объекто

Динамически - ориентированные блоки.
В процесс моделирования транзакты создаются, порождают другие транзакты, собираются и уничтожаются. Каждому сообщению соответствует набор параметров, количество которых может быть установлено до 10

Вычислительная категория
В вычислительной категории используются объекты 3-х видов: арифметические, логические, и функции. Арифметические объекты описываются блоком variable в режиме целых чисел и FVARIABLE в режиме с плав

Методы планирования эксперимента на модели.
Основная задача планирования машинных экспериментов заключается в получении необходимой информации об исследуемой системе при ограниченных ресурсах (затраты машинного времени, памяти и т.п.). К чис

Стратегическое планирование машинных экспериментов с моделями систем
Можно выделить стратегическое и тактическое ПЭ на моделях систем. Стратегическое планирование – ставит своей целью получение необходимой информации о системе S с помощью модели M

Тактическое планирование машинных экспериментов с моделями систем
Здесь решают проблемы: - определения начальных условий и их влияния на достижения установившегося результата при моделировании; - обеспечения точности и достоверности результатов

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги