рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Сенсорная перчатка и тактильная обратная связь

Сенсорная перчатка и тактильная обратная связь - раздел Образование, Мультимедиа технологии в образовании Сенсорная Перчатка. Непосредственное Отслеживание Дв...

Сенсорная перчатка. Непосредственное отслеживание движений руки давно вызвало большой интерес у многих разработчиков. Например, в 1983 г. было запатентовано устройство Digital Entry Glove. Но настоящим прорывом стала сенсорная перчатка DataGlove, разработанная в Исследовательском центре имени Джозефа Эймса NASA, а затем усовершенствованная и выпущенная на рынок компанией VPL Research (рис.2.20).

Для определения величины углов сгиба пальцев в перчатке VPL DataGlove были использованы эластичные оптические волокна (световоды). Сгибание пальцев обнаруживается с помощью набора из десяти оптоволоконных датчиков, которые вшиты в перчатку над каждым суставом пальцев. Работа датчиков основана на том, что, если оптоволокно сгибается, то переданный по нему свет ослабевает пропорционально изгибу. Каждый датчик состоит из источника света на одном конце оптоволокна и детектора на другом. Микропроцессор последовательно сканирует все сенсоры и вычисляет угол сгиба каждого сустава пальцев, используя определенную модель строения человеческой кисти. Перчатка подключается к ПК с помощью стандартного последовательного интерфейса RS-232 [6].

  Рис.2.20. Сенсорная перчатка VPL DataGlove

Разработано несколько конкурирующих сенсорных перчаток, самая известная из которых – недорогая перчатка Nintendo PowerGlove (рис.2.21, слева), предназначенная для использования в видеоиграх. Перчатки со световыми сенсорами разработала калифорнийская фирма Virtual Technologies, например, самые простые варежки CyberGlove. Существует также 18-сенсорная модель, отслеживающая движения пальцев (рис.2.21, в центре), и 22-сенсорная, способная еще и уловить сгибание-разгибание всех пальцев, кроме большого.Эти перчатки дают ошибку лишь на 0,5-1°. 22-сенсорная модель снимает показания 149 раз в секунду, а 18-сенсорная – 112 раз в секунду. Компания Computers & more выпускает перчатку 5th Glove (рис.2.68, справа) [87].

В других моделях, в частности, Virtex CyberGlove, для определения величины углов сгиба пальцев применяются датчики натяжения. Для некоторых задач точность (порядка ±10º) и повторяемость показаний таких датчиков могут быть недостаточны. Более точный метод измерения дает устройство Dexterous Handmaster компании Exos, имеющее наружный скелет, закрепляемый на суставах пальцев, и датчики, использующие эффект Холла. Датчики позволяют определять углы сгиба пальцев с точностью ±0,5º. Однако, не вполне ясно, можно ли извлечь какую-либо пользу из такой точности, и вполне может оказаться, что четырех уровней данных, которые дает перчатка Nintendo PowerGlove, фактически достаточно для большинства задач [73].

Рис.2.21. Сенсорные перчатки: Nintendo PowerGlove; 18-сенсорная модель фирмы Virtual Technologies; 5th Glove

Есть и технология с механическими датчиками, но она тяжела и несовершенна [87].

Следящая система переводит в цифровую форму также и положения руки. Аэрокосмическая корпорация МсDonnell Douglas разработала систему Polyhemus, которая встраивается в перчатку DataGlove и служит для определения положения руки [76].

Упоминавшиеся видеошлем VIEW и перчатка DataGlove используют систему датчиков, чувствительных к электромагнитному полю. Точность определения положения порядка двух миллиметров. Перчатка может находиться в любой точке условного шара диаметром в 1 м [76].

Более современная перчатка P5 американской фирмы Essential Reality показана на рис. 2.22. Базовая станция включается в порт USB и не требует внешнего питания, перчатка включается проводом в базовую станцию. На тыльной стороне «ладони» расположено 8 инфракрасных светодиодов, которые позволяют базовой станции отслеживать перемещения руки в пространстве. В базовой станции, находятся 2 инфракрасные камеры, что позволяет более надежно следить за перчаткой и точно определять расстояние до нее.

Рис.2.22. Базовая станция и перчатка P5

Зона видимости базовой станции составляет 45° по вертикали и горизонтали и около 1,5 м в «глубину». В этом конусе P5 может отслеживать координаты руки по 3 осям с точностью до 0,6 см (в 60 см от базы), а также поворот и наклон ладони с точностью до 2°. Опрос координат происходит с частотой 40 Гц (задержка составляет 12 мс). Кроме светодиодов системы слежения, в перчатке имеется 5 резиновых «пальцев» с датчиками изгиба. К пальцам пользователя они крепятся пластиковыми кольцами и меряют изгиб с точностью в 1,5°. Еще на тыльной стороне перчатки имеется 4 кнопки, одна из которых программируется (остальные служат для калибровки, включения/выключения и переключения режимов работы). Таким образом, в терминах джойстика P5 имеет 11 аналоговых осей и 1 кнопку [95].

Тактильная обратная связь (Forced Feedback) используется в сенсорных перчатках для имитации прикосновения руки к объекту. Тактильную обратную связь наиболее просто реализует небольшой динамик на ладони, поскольку рука хорошо чувствует щелчок, издаваемый динамиком в ответ на какое-либо событие. Но это лишь сигнал о событиях, а хотелось бы получить ощущение прикосновения к виртуальным объектам [6]. Такое ощущение можно имитировать разными способами.

Для имитации ощущения прикосновения с помощью давления часто используют воздушные надувные баллончики, с помощью которых регулируется сила или жесткость давления перчатки на пальцы. Делались попытки применить пьезоэлектрические кристаллы, которые при вибрации создают ощущение давления, а также сплавы с памятью формы, которые можно заставить изогнуться, пропуская слабый электрический ток. Подобное устройство Portable Dexterous Master (рис.2.23), состоящее из перчатки VPL DataGlove, снабженной тремя пневматическими приводами, было разработано изобретателем Григором Бердиа из Университета Рутгерса [6].

Рис.2.23. Устройство Portable Dextrous Master

Кроме ощущения давления важна и имитация ощущения сопротивления при попытке сдвинуть виртуальный объект. Для этой цели может использоваться миниатюрный робот-манипулятор, закрепляемый на руке [6]. Например, более поздние модели перчатки DataGlove уже включали пьезоэлектрические датчики на кончиках пальцев, чтобы обеспечить некоторый уровень тактильной обратной связи. Когда пользователь берет в руку виртуальный объект, то ощущает давление от соприкосновения его пальцев с поверхностью объекта. Еще позднее перчатка была снабжена специальным робототехническим экзоскелетом, позволяющим создавать ощущения веса и силы [14].

«Силовая» обратная связь может быть реализована и без сенсорных перчаток. Простое устройство «силовой» обратной связи было разработано компанией Digital. Это рукоятка, подобная ручке газа на мотоцикле, которая может менять силу своего сопротивления повороту. Группа специалистов из компании UNC для создания «силовой» обратной связи применила электромеханический манипулятор.

Тактильная обратная связь весьма чувствительна к характеристикам контуров обратной связи: пользователь подсознательно мгновенно реагирует на импульсы от системы и корректирует свою реакцию до того, как система успеет отработать предыдущие реакции. Считается, что для создания надежной иллюзии ощущения объекта тактильная система должна иметь скорость обновления информации 300-1000 Гц, что как минимум на порядок выше, чем скорость обновления визуальной информации [6].

Компания Virtual Technologies разработала устройство CyberGrasp с обратным тактильным воздействием, предоставляя пользователю возможность почувствовать виртуальный мир своими руками (рис. 2.24).

Специальные крючья одеваются поверх перчаток и при необходимости препятствуют сжиманию кисти с силой до 12 Н (Ньютон) на каждый палец (силу в 1 Н надо приложить, чтобы телу весом 1 Кг изменить ускорение на 1 м/с; или это сила тяготения, действующая на 1/9,8 Кг). Максимальное воздействие CyberGrasp сравнимо с тем, которое можно испытать, подвесив по 1,2 Кг на каждый палец при прямом локтевом суставе, плюс сама лапка весит еще 350 г.

Компания Virtual Technologies изобрела и устройство CyberTouch с обратным тактильным воздействием (рис.2.25). Это устройство небольших размеров надевается на кончики пальцев и передает им разного рода вибрацию. Крепится оно поверх VR-перчаток.

Рис.2.24. Устройство CyberGrasp Рис.2.25. Устройство CyberTouch

Англичане придумали перчатки с системой шариков и компрессором для нагревания воздуха, в которых можно почувствовать не только неровности виртуальных объектов, но и их температуру. Такое устройство наиболее полно передает тактильное воздействие на руки.

Датчики кисти рукипредназначены для слежения за ее перемещениями. В самые простые датчики встроен только Position Tracker, отслеживающий перемещения небольшого кубика в руке пользователя. Производством таких датчиков занимается компания Ascension Technology Corporation. Например, датчик MibiBird (рис. 2.26, слева) способен отслеживать кисть при вращении ±180° по вертикали и горизонтали, а также ±90° вокруг своей оси с ошибкой на 0,1-0,5°. Приспособление Motion Star (рис. 2.26, справа) более массового характера схоже с MibiBird. Существуют и более чувствительные подобные приборы [88].

Датчик MibiBird Приспособление Motion Star

Рис.2.26. Датчики кисти руки

Далее рассмотрим лишь некоторые сферы применения тактильной обратной связи, получившей альтернативное название – гаптика (Haptics), на примерах популярных решений компаний Haption и Force Dimention.

Тренажеры и симуляторы. Многие ремесела основаны на тонком моторном контроле и координации рук человека. Изучение и подготовка в некоторых профессиях требует большой практики, а достижение определенного мастерства может занимать годы (например, каллиграфия). Тренажеры, симуляторы и системы имитации предназначены для повышения эффективности обучения. Использование устройств с тактильной обратной связью позволяет проводить процесс обучения более эффективно, особенно когда руку обучаемого ведет электронный эксперт – устройство с тактильной обратной связью.

Телеуправление (дистанционное управление) и микро-манипуляции, робототехника.Работа с недоступным или опасным материалом требует телеприсутсвия оператора. Использование устройств с осязательной обратной связью позволяет повысить качество дистанционного управления роботами и различными исполняющими устройствами за счет передачи дополнительной интуитивно понятной оператору осязательной информации. К сожалению, стандартные джойстики не позволяют использовать данный канал восприятия информации человека.

Использование устройств с обратной тактильной связью оправданно в ответственных операциях с дистанционным управлением роботами, когда операторы могут мгновенно чувствовать реакцию и различные ограничения манипулятора (динамика, ограничения рабочего пространства и т.д.).

Микро-манипуляторы – маленькие роботы, построенные, чтобы выполнять различные задачи с объектами, часто более тонкими, чем человеческие волосы. Соответственно, использование устройств с тактильной обратной связью позволяет оператору манипулировать микро-роботами интуитивно понятным и привычным способом.

Медицина. Большое число высокотехнологичных устройств для медицины часто ограничивается первичным инструментом хирурга, а именно их руками. Соответственно, использование систем с обратной тактильной связью в медицинских тренажерах и реальных медицинских роботах позволяет передавать хирургу осязательную информацию, что позволяет сделать все манипуляции в привычной и интуитивно понятной форме [100].

– Конец работы –

Эта тема принадлежит разделу:

Мультимедиа технологии в образовании

Федеральное государственное автономное образовательное... учреждение высшего профессионального образования... Южный федеральный университет...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Сенсорная перчатка и тактильная обратная связь

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Мультимедиа технологии в образовании
    Учебное пособие Часть 2. Виртуальная реальность, создание мультимедиа продуктов, применение мультимедиа технологий в образовании  

Понятие виртуальной реальности
Одно из перспективных направлений повышения эффективности использования компьютеров связано с разработкой аппаратных и программных средств комплексного воздействия на пользователя персонального ком

Определения и восприятие ВР
Определение 1. ВР – это совокупность средств, позволяющих создать у человека иллюзию того, что он находится в искусственно созданном мире, путем подмены обычного восприятия окружающей действительно

Измерения ВР
Разные системы ВР предоставляют различные виды интерактивности, уровни погружения и функции. Виды интерактивности[10]: · полет в ВР. Свобода передвижения,

Появление и разработки систем ВР
Создание систем ВР основано на использовании компьютерной графики и анимации, компьютерного и имитационного моделирования, дистанционного управления, автоматизированного проектирования, техники чел

Способы отображения
Проще всего «окунуться» в виртуальный мир можно, наблюдая за ним с помощью обычного дисплея ПК. В таком случае говорят о «настольной» или «оконной» системе ВР. Такая система имеет более высокое раз

Передвижение в виртуальном пространстве
Передвижение в виртуальном пространстве связано с необходимостью позиционирования. Обычная двумерная мышь как устройство указания точек на плоскости имеет всего 2 степени свободы.

Звуковая поддержка ВР
Звук дополняет визуальную информацию и предупреждает пользователя о событиях, им невидимых, например, происходящих за его спиной. Для такой сигнализации иногда вполне достаточно и монозвука. А если

Системы ВР VFX 1 и VFX 3D
Система ВР VFX 1 Headgear VR System компании Forte Technologies (рис.2.44), основой которой является HMD, состоит из следующих модулей [14, 17]:

Рабочая станция Haptic Workstation
Она является примером комплексной разработки различных устройств ВР компанией Immersion (погружение). В комплект рабочей станции Haptic Workstation (рис.2.48) входят [18]:

Сферы и перспективы применения сред ВР
Сферы применения рассматриваемой аппаратно-программной среды ВР достаточно широки и многообразны: · визуальное трехмерное конструирование; · дистанционное управление роботами, тра

Интерактивные интеллектуальные игры
Все начиналось в среде операционных систем (ОС) UNIX и MS-DOS с достаточно просто организованных, но весьма увлекательных компьютерных игр стратегического плана, таких как «Шахматы», «Подземелье»,

Перфоманс-анимация
Перфоманс-анимация – это относительно новое направление в анимации, которое дает возможность передавать естественные, реалистичные движения в РВ. Маленькие, легкие датчики прикрепляются на передвиг

Моделирование и синтез визуальных динамических образов виртуальных людей
Весьма интересным и перспективным направлением исследований и разработок является и так называемый синтез динамических образов виртуальных людей на основе моделирования различных систем и элементов

Интерактивные интеллектуальные действа с альтернативными сценариями
Гипертехнологии можно применить не только к текстам или изображениям, но и к динамическим действам (фильмам или анимациям). Нелинейность информационной структуры в этом случае достигается на основе

Области применения мультимедиа приложений
По большому счету все многочисленные области применения ММ приложений можно свести в три основные группы [2]. 1. Деловая сфера, где могут использоваться ·

Программы создания и редактирования текста и гипертекста
Текстовые процессоры. Среди множества текстовых процессоров сегодня доминируют: · MS Office Word 2007 – развитая ПС, позволяющая создавать достаточно слож

Программы создания и редактирования графики
В данной группе выделяют четыре вида программ [2]: · программы для работы с растровой графикой; · программы для работы с векторной графикой; · комбиниров

Программы создания и редактирования звука
Программы для работы со звуком можно условно разделить на три большие группы [2]: · программы-секвенсоры для создания музыки на основе секвенсорной или MIDI-технологии; ·

Программы создания и редактирования трехмерной графики и анимации
Для создания традиционной (двухмерной) анимации могут использоваться программы: Macromedia Director, семейство Autodesk Animator, Animator Pro,

Программы создания и редактирования интерактивных трехмерных представлений
К ним относятся программы поддержки виртуальных панорам: QuickTime, программы компании Live Picture (для создания изображений в форматах FPX и IMOB), программа для просмотра

Основные этапы и стадии разработки ММ продуктов
Используются две основных технологии создания ММ продуктов различного назначения [3]: · internet/intranet-технология, когда продукт представляет собой ГТ-документ;

Технологии поддержки текста и гипертекста УМ
Методы представления информации могут быть разделены на линейный и структурный. При линейном представлении учебной информации структура изложения УМ однозначно определяется порядком их следо

Технологии использования графики
Известно, что векторные изображения требуют меньшего объема памяти при их хранении, чем растровые, и могут масштабироваться без потери качества [4]. Таким образом, если в ММ продукте (напр

Технологии поддержки анимации и трехмерной графики
Анимация является одной из современных форм представления графики в электронных публикациях. На первый взгляд анимация подобна видеофильму, но она принципиально отличается от него, так как имеет де

Технологии создания и поддержки видео
Видеоинформация представляется в виде видеоклипов (видеороликов), т.е. наборов последовательно выводимых друг за другом взаимосвязанных изображений – кадров (видеокадров). Если скорость появления в

Технологии создания и поддержки интерактивных трехмерных представлений
Технология QuickTimeVR.Она обеспечивает поддержку таких важнейших представлений среды ВР как панорама ВР, объект ВР и сцена ВР. Панорама ВР отражает вид из фиксированной точ

Мультимедиа издания на CD-ROM и DVD-ROM
1. Энциклопедии. Это наиболее дорогие и широко известные издания на CD. К ним относятся: «Иллюстрированный Энциклопедический словарь» (издательство «Аутопан»); «Большая энциклопеди

Типы программных средств разработки ММ продуктов
Интегрированные среды разработчика (ИСР) позволяют объединить созданные отдельно фрагменты разных типов в единое законченное целое – ММ приложение. ИСР ММ приложений можно условно

Инструментальные среды поддержки языков программирования
Универсальные языки программирования в сравнении с авторскими системами оказываются более гибкими и позволяют создавать более производительные ММ приложения. Но в современных условиях гибкость и бы

Проблемы создания ММ КСО
Создание ММ КСО связано с решением целого ряда разноплановых проблем. И как часто бывает в современных и перспективных, интегрированных и постоянно усложняющихся областях знаний и человеческой деят

Направления и средства адаптации ММ КСО к возможностям и особенностям пользователя
Особую значимость имеют следующие направления адаптации ММ КСО, которые пользователь может применить: · к возможностям графического интерфейса пользователя (ГИП) среды обучения. Проявляетс

Образовательные ресурсы
Рис.4.1. Архитектура образовательной среды Ø ускоренное – проводится по одной из первых двух основны

Новые способы работы с информацией
ММ обеспечивает возможность интенсификации и повышение мотивации обучения за счет применения таких новых способов работы с аудиовизуальной информацией как [1]: · «манипулиров

Расширение возможностей иллюстраций
При использовании ММ средств в образовании существенно расширяются возможности иллюстраций. Вообще говоря, существует два основных толкования термина «иллюстрация»: · изображение

Интерактивность
ММ является исключительно полезной и плодотворной образовательной технологией, именно благодаря присущим ей качествам интерактивности, гибкости и интеграции различных типов учебной информации, а та

Активизация обучаемых
Использование ММ позволяет обучаемым работать над учебными материалами по-разному – самим решать, · как именно изучать материалы, · как применять интерактивные возможности

Интенсификация процессов обучения.
Применение ММ может позитивно сказаться сразу на нескольких аспектах учебного процесса. 1. ММ может стимулировать когнитивные аспекты обучения, такие как восприятие и осознание

ГЛОССАРИЙ К МОДУЛЮ 2
Аватар – особый класс объектов VRML, трехмерный образ персонажа, действующего в виртуальном мире. В некоторых Internet-приложениях аватары выступают в качестве виртуальных представ

ЗАКЛЮЧЕНИЕ
ММ технологии постоянно развиваются, поскольку совершенствует-ся компьютерная и сетевая аппаратура, периферийные устройства аудио-визуализации и техника эффективного представления все больших объе-

СПИСОК СОКРАЩЕНИЙ
АОМ – автоматизированный обучающий модуль; АОС (КОС) – автоматизированная (компьютерная) обучающая система; АСТК – автоматизированная система тестового контроля; АУК (КУК

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Григорьев С.Г., Гриншкун В.В. Мультимедиа в образовании. – http://www.ido.edu.ru/open/mm/. 2. Кречман Д.Л., Пушков А.И. Мультимедиа своими руками. – СПб.: БХВ – Санкт-Петербург,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги