рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Тема 2. Молекулярный и клеточный уровень

Тема 2. Молекулярный и клеточный уровень - раздел Образование, Тема 1. Сущность и субстрат жизни. Свойства живого Организации Жизни. План...

организации жизни.

План

Ø Строение и свойства биологических макромолекул - белков, жиров, углеводов, нуклеиновых кислот.

Ø Строение клетки. Органоиды клетки.

Ø Растительные и животные клетки.

Ø Обмен веществ и поток энергии в клетке (анаболизм, катаболизм)

Ø Размножение клеток (митоз, амитоз, мейоз).

Химические вещества клетки

В состав клетки входит около 70 химических элементов

I группа - макроэлементы (около 98 % массы клетки) образуют четыре элемента: водород, кислород, углерод и азот. Это главные компоненты всех органических соединений.

II группа - сера и фосфор, калий, натрий, кальций, магний, железо, хлор

 

Вместе элементами I группы сера и фосфор являются биоэлемен­тами (необходимые компоненты молекул биологических полимеров)

 

Роль химических элементов в клетке

 

Элементы Роль в клетке
Na, К, CI проницаемость клеточных мембран для различных веществ и проведение импульса по нервному волокну
Са и Р участвуют в формировании костной ткани, определяя прочность кости.
Са один из факторов свертываемости крови.
Fe входит в состав гемоглобина
Mg включен в хлорофилл (растения) входит в состав ряда ферментов (животные)

 

III группа – микроэлементы (0,02 % массы клетки): цинк, медь, иод, фтор, кобальт, марганец, молибден, бор и др.) Микроэлементы входят в состав ферментов, витаминов и гормонов — веществ, обладающих боль­шой биологической активностью.

Роль микроэлементов в клетке

 

Элементы Роль в клетке
йод входит в состав гормона щитовидной железы тироксина Недостаток – у взрослых развивается зоб (увеличение щитовидной железы). У детей недостаток йода сопровождается резкими изменениями всей структуры тела. Ребенок перестает расти, умственное развитие задерживается (кретинизм). Избыток - может наблюдаться при гипертиреозе, может развиться и базедова болезнь с зобом, тахикардией. Кроме этого наблюдается раздражительность, мышечная слабость, потливость, исхудание, склонность к диарее. Основной обмен повышается, наблюдается гипертермия, дистрофические изменения кожи и ее придатков, раннее поседение, депигментация кожи на ограниченных участках (витилиго), атрофия мышц.
Кобальт необходимый компонент витамина В12 (участвует в процессах синтеза нуклеиновых кислот, белковом обмене, кроветворении).
Молибден   входит в состав ферментов, влияя на рост, принимает участие в обмене азота, оказывает влияние на обмен меди, способствует метаболизму углеводов и жиров, является важной частью фермента, отвечающего за утилизацию железа, в результате чего помогает предупредить анемию.
Цинк   входит в состав ряда ферментов, гормона инсулина; оказывает влияние на активность половых и гонадотропных гормонов гипофиза. Увеличивает активность ферментов: фосфатаз кишечной и костной, катализирующих гидролиз. Участвует также в жировом, белковом и витаминном обмене, в процессах кроветворения. Недостаток - задержка роста, перевозбуждение нервной системы и быстрое утомление, бесплодие. Поражение кожи происходит с утолщением эпидермиса, отеком кожи, слизистых оболочек рта и пищевода, ослаблением и выпадением волос. Дефицит цинка может приводить к усиленному накоплению железа, меди, кадмия, свинца. . При недостатке цинка дети отстают в развитии, страдают гнойничковыми заболеваниями кожи и слизистых оболочек. Избыток - задерживает рост и нарушает минерализацию костей, отмечается дефицит железа, меди, кадмия.
Селен оказывает антиоксидантное действие, замедляя старение, способствует предупреждению роста аномальных клеток, укрепляет иммунную систему. В сочетании с витаминами А, С и Е предохраняет от возникновения онкологических заболеваний, помогает при артрите, разрушает вредные для организма вещества (защищает организм от тяжёлых металлов). Увеличивает выносливость организма благодаря увеличению поступления кислорода к сердечной мышце. Необходим для образования белков; поддерживает нормальную работу печени, щитовидной железы, поджелудочной железы, важен для поддержания репродуктивной функции. Недостаток –организме усиленно накапливаются мышьяк и кадмий, которые, в свою очередь, усугубляют дефицит селена. Избыток- может вызывать увеличение печени до 3-х см и боли в правом подреберье, боли в конечностях, судороги, чувство онемения; может привести к дефициту кальция.
Марганец важен для репродуктивных функций и нормальной работы центральной нервной системы. Помогает устранить половое бессилие, улучшить мышечные рефлексы, предотвратить остеопороз, улучшить память и уменьшить нервную раздражительность. Недостаток – нарушаются процессы окостенения во всем скелете, трубчатые кости утолщаются и укорачиваются, суставы деформируются. Нарушается репродуктивная функция. Избыток - сильная утомляемость, слабость, сонливость, тупые головные боли в лобно-височных областях; тянущие боли в пояснице, конечностях, боли в правом подреберье, в подложечной области, понижение аппетита; медлительность движений, расстройство походки, парестезии, сильная скованность движений; расстройство мочеиспускания, половая слабость; бессонница, подавленное настроение, слезливость. Избыток марганца усиливает дефицит магния и меди.
Фтор участвует в костеобразовании и процессах формирования дентина и зубной эмали; стимулирует кроветворную систему и иммунитет, участвует в развитии скелета, стимулирует репаративные процессы при переломах костей. Предупреждает развитие сенильного остеопороза. Недостаток–резке учащение заболевания зубным кариесом. Избыток - развивается тяжелое хроническое отравление, называемое флюорозом. При этом поражаются кости и зубы. Внешне флюороз проявляется в виде белых и желтоватых пятнышек на зубах с последующим их разрушением. Основной источник промышленного загрязнения атмосферы фтористыми соединениями — предприятия по производству алюминия, цемента, химических удобрений.

 

Неорганические вещества, входящие в состав клетки

 

Вода. Содержание колеблется в широких пределах: в клетках эмали зубов вода составляет по массе около 10%, а в клетках развивающегося зародыша — более 90 %. В среднем в многоклеточном организме вода составляет около 80 % массы тела.

Свойства связаны главным образом с малыми размерами молекул воды, с их полярностью и способностью соединяться друг с другом водородными связями.

Вода — превосходный растворитель для полярных веществ.

Под действием некоторых ферментов вступает в реакции гидролиза, т.е. реакции, при которых к свободным валентностям различных молекул присоединяются группы ОН или Н воды. В результате образуются новые вещества с новыми свойствами.

Вода обладает хорошей теплопроводностью и большой тепло­емкостью, поэтому температура внутри клетки остается неизмен­ной или ее колебания оказываются значительно меньшими, чем в окружающей клетку среде.

 

Вода свойства растворитель для полярных веществ реакции гидролиза хорошая теплопроводность большая тепло­емкость

 

Минеральные соли.

 

Большая часть неорганических веществ клетки находится в виде солей — либо в ионном состоянии, либо в виде твердой нерастворимой соли. Среди первых большое значение имеют катионы К+ Na+, Са2+

От концентрации солей зависят буферные свойства клетки.

Буферностью называют способность клетки поддерживать слабощелочную реакцию своего содержимого на постоянном уровне. Внутри клетки буферность обеспечивается главным образом анионами Н2РО4- и HPO42-. (дигидрофосфат-ионы Н2РО4 и гидрофосфат HPO42-

Во внеклеточной жидкости и в крови роль буфера играют Н2СО3 (угольная кислота) и НСО3- (гидрокаобонаты). Анионы слабых кислот и слабые щелочи связывают ионы водорода и гидроксил - ионы (ОН-), благодаря чему реакция внутри клетки практически не меняется.

 

Органические вещества

 

Органические соединения составляют в среднем 20—30 % массы клетки живого организма.

К ним относятся биологические полимеры:

-белки

- нуклеиновые кислоты

- углеводы

- жиры

- ряд небольших молекул — гормоны, пигменты, аминокислоты, простые сахара, нуклеотиды и т.д.

Различные типы клеток отличаются количественным содержанием органических соединений. Так, в растительных клетках преобладают углеводы. Наоборот, белки в большем количестве содержатся в животной клетке, чем в растительной (40—50 % против 20—35 %). Тем не менее каждая из групп органических веществ в клетке любого типа выполняет сходные функции.

Белки занимают первое место среди органических веществ клетки как по количеству, так и по значению.

Белки — это высокомолекулярные полимерные соединения, мономером которых служат аминокислоты.

Молекула каждой аминокислоты содержит специфическую часть (боковую группу - R) - аминокислотный остаток и неспецифическую часть.

Цепи аминокислот называются пептидами.

Белки - это пептиды, но большей длины (полипептиды). Граница между истинными белками и пептидами условна: белками считают пептиды, цепь которых включает более 50 аминокислотных остатков (молекулярная масса белков от 5 тысяч дальтон и выше).

Аминокислоты соединяются между собой пептидной связью.

Пептидная связь возникает при образовании белков и пептидов в результате взаимодействия аминогруппы (– NH2) одной аминокислоты с карбоксильной группой (–СООН) другой аминокислоты.

 

Схема пептидной связи

 

Всего биохимикам известно около 200 различных природных аминокислот.20 аминокислот, обнаруживаемые в белках - это протеиногенные аминокислоты – то есть аминокислоты, из которых строятся белковые молекулы. В организме человека встречается 5 млн. типов белковых молекул, отличающихся не только друг от друга, но и от белков других организмов.

Четыре уровня структурной организации:

Первичная структура последовательность аминокислот в полипептидной цепи (ковалентная структура).
Вторичная струк­тура Характеризует различные типы регулярных структур, встречающихся во многих белках: · спиральные структуры (α-спирали), образованные единичной полипептидной цепью · складчатые слои (β-структуры), образованные двумя или не­сколькими участками цепи Эти структуры стабилизированы водородными связями, образованными между — СО- и —NH- группами пептидных связей в спирали.

 

третичная структура характеризует пространственную укладку молекул белка, если она образована одной полипептидной цепью. Определена нековалентными взаимодействиями между спиральными и /3-структурными участками полипептидной цепи в совокупности с взаимодействиями R-групп и функциональных групп остова молекулы. Третичная структура имеет прямое отношение к форме молекул белка, которая может быть шарообразной (глобулярной) или нитевидной (фибриллярной). Дисульфидные (S—S) связи не определяют характер свертывания полипептидной цепи, но стабилизируют третичную структуру после завершения процесса свертывания. Такие связи образуются самопроизвольно, когда соответствующие—SH-группы оказываются рядом. сворачивание спирали в более тесное образование за счет дополнительного «сшивания» слабыми связями
Четвертичная структура характеризует пространственное взаиморасположение субъединиц белка в том случае, если он состоит более чем из одной полипептидной цепи.

Денатурация белка - нарушение структурной организации белков (утрата структуры, присущей данной белковой молекуле) в результате изменения физических условий, в том числе изменение рН, температуры или обработка водными растворами некоторых неорганических веществ.

При денатурации молекула развертывается и теряет способность выполнять свою обычную биологическую функцию. Это изменение может носить временный или постоянный характер, но аминокислотная последовательность в молекуле белка остается неизменной.

Денатурированный белок существенным образом отличается по своей пространственной организации от белка в естественном (нативном) состоянии и лишен биологической активности. Дена­турирующие воздействия в той или иной степени разрушают нековалентную структуру нативного белка (вторичную, третичную и четвертичную). Некоторые белки при незначительных изме­нениях структуры не теряют биологической активности, другие даже при незначительных перестройках, которые не фиксируются обычными методами, полностью инактивируются.

Ренатурация белка - воссоздание струк­туры белка и его функциональной активности при восстанов­лении нормальных условий среды полностью.

Это свойство белков полностью восстанавливать утраченную структуру широко используется в медицинской и пищевой промышленности для приготовления некоторых медицинских препаратов, например антибиотиков, для получения пищевых концентратов, сохраняющих длительное время в высушенном виде свои питательные свойства, вакцин, сывороток, ферментов.

– Конец работы –

Эта тема принадлежит разделу:

Тема 1. Сущность и субстрат жизни. Свойства живого

Уровни организации живой материи Типы клеточной организации Сущность и субстрат жизни... Целостность непрерывность и дискретность прерывность... Жизнь целостна и в то же время дискретна как в плане структуры так и функции...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Тема 2. Молекулярный и клеточный уровень

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Типы клеточной организации
План 1.Сущность и субстрат жизни. 2. Свойства живого. 3. Уровни организации живой материи. 4. Типы клеточной организации.

Рост и развитие.
Рост организмов происходит путем прироста массы организма за счет увеличения размеров и числа клеток. Он сопровождается развитием, проявляющимся в дифференцировке клеток, усложнении структуры и фун

Уровни организации, выделяемые в многоклеточном организме
(по Э. Дс. Робертсу и др., 1967, с изменениями)   Размеры объекта Объект изучения Уровень организации (по объекту изучения

Функции белков
  строительная (структур­ная) белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также внеклеточных структур.

Функции жиров
  Энергетическая расщепления 1 г жиров до СОг и НгО освобождается 38,9 кДж. транспортная и структурная

Образование полинуклеотида
        В зависимости от вида пентозы, присутствующей в нуклеотиде, различ

Строение РНК и ДНК
    Нуклеиновые кислоты обладают

Формы РНК
Форма РНК Функции рибосомная РНК (рРНК) На долю рРНК приходится 80–85% (до 90%) от общего содержания РНК в клетке

Строение клетки
Строение и свойства органоидов и органелл клетки Органоиды, органеллы Строение Функции Плазматическая (цитопл

Сравнение растительной и животной клетки
Общие признаки · Единство структурных систем — цитоплазмы и ядра. · Сходство процессов обмена веществ и энергии. · Единство принципа наследственного кода. · Унив

Анаболизм и катаболизм
  Основные метаболические процессы: Ø анаболизм (ассимиляция) Ø катаболизм (диссимиляция).  

Поступление веществ в клетки
  Благодаря содержанию растворов солей, сахаров и других осмотически активных веществ, клетки характеризуются наличием в них определенного осмотического давления. Например

Фотосинтез
Фотосинтез — это синтез органических соединений в листьях зеленых растений из воды и углекислого газа атмосферы с использованием солнечной (световой) энергии, адсорбируемой хлорофиллом в

АТФ-синтетаза парами выпускет протоны наружу и синтезирует АТФ из АДФ.
  5) два электрона, поступившие к кофактору Q, передаются далее по цепочке белков, которая очень похожа на цепь переноса электронов. 6) электроны поступают от пластоцианина к

Сравнение циклического и нециклического фотофосфорилирования
Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом А

С4-фотосинтез
С4-фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник,

Хемосинтез
Синтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом.

Бактериальный фотосинтез
Фотосинтез бактериальный — фотосинтез, осуществляемый бактериальными микроорганизмами. Типично водные микроорганизмы, распространенные в пресных и соленых водоемах.

Размножение клеток
  Размножение или пролиферация (от лат. proles — потомство, ferre — нести) клеток — это процесс, который приводит к росту и обновлению клеток. Данный процесс характер

Митотический цикл и митоз
  Фазы Процесс, происходящий в клетке (фаза ме­жду делени­ями клеток)   Пресинтетический период (G

РАЗМНОЖЕНИЕ
Размножение — это свойство организмов производить потомство или способность организмов к самовоспроизведению.   Различают два основных способа размнож

Половое размножение
встречается у: · одноклеточных · многоклеточных (растений и животных).   Формы полового процесса: · Конъюгация · к

Чередование поколений
Закономерная смена в жизненном цикле организмов генераций, различающихся способом размножения. В этом случае одно или несколько бесполых поколений организмов сменяется поколением организмов, размно

ОСНОВНЫЕ ТЕРМИНЫ И ПОНЯТИЯ
Наследственные свойства организма передаются в процессе размножения:   при половом размножении - через половы

Законы и закономерности генетики
Название Автор Формулировка Правило еди­нообразия гиб­ридов первого поколения (пер­вый закон) Г.Мендель 18

МНОЖЕСТВЕННЫЙ АЛЛЕЛИЗМ
Многие гены у разных организмов существуют более чем в двух аллельных состояниях. Они возникают: · вследствие мутаций · замены или утраты нуклеотида в молекуле ДНК

ВЗАИМОДЕЙСТВИЕ НЕАЛЛЕЛЬНЫХ ГЕНОВ
  Часто на один признак организма могут оказывать влияние несколько пар неаллельных генов(полигенное наследование). Взаимодействие неалле

СЦЕПЛЕНИЕ ГЕНОВ
Признаков у организма намного больше, чем хромосом. У человека насчитывают 23 пары (46) хромосом. Генов от 100 тыс. до 1 млн. В каждой хромосоме находится много генов.

ХРОМОСОМНЫЙ МЕХАНИЗМ ОПРЕДЕЛЕНИЯ ПОЛА
  Фенотипические различия между особями разного пола обусловлены генотипом. Диплоидный набор хромосом называют кариотипом.   В женском и мужском

НАСЛЕДОВАНИЕ, СЦЕПЛЕННОЕ С ПОЛОМ
Наследование признаков, определяемых генами, лежащими в половых хромосомах (признаков, сцепленных с полом) Различают: Х-с

Голандрическое наследование
  Активно функционирующие гены Y-хромосомы, не имеющие аллелей в Х-хромосоме, присутствуют в генотипе только гетерогаметного пола в гемизиготном состоянии.

ОСНОВНЫЕ ТИПЫ НАСЛЕДОВАНИЯ ПРИЗНАКОВ
Наследование - способ передачи наследственной информации, меняющийся в зависимости от форм размножения.   Наследование осуществляется:

ИЗМЕНЧИВОСТЬ
Изменчивость - способность живых организмов приобретать новые признаки и свойства.      

ТЕМА 5. ПОПУЛЯЦИОННО-ВИДОВОЙ УРОВЕНЬ ОРГАНИЗАЦИИ ЖИЗНИ. ЗАКОНОМЕРНОСТИ ЭВОЛЮЦИИ ОРГАНИЧЕСКОГО МИРА.
  План Ø Популяционная структура видов Ø Экологические и генетические показатели популяции

Критерии вида.
  Название критерия Признаки особей по критерию Исключение Морфологический Сходство внешнего и

Экологические показатели популяции
  размеры ареала   Неравномерное расселение особей по ареалу вида

Генетические показатели популяции
  Изменения отдельных особей не приводят к эволюционным изменениям, но являются объектом действия естественного отбора     Пул генов

МИКРОЭВОЛЮЦИЯ.
Элементарные эволюционные факторы: мутационный процесс

Макроэволюция
Внутривидовой уровень эволюции был назван - микроэволюция надвидовой – макроэволюция   Макроэволюция – это совокупность эволюционных преобразова

Типостаз
Сформировавшийся в период типогенеза основной план организации данного таксона в дальнейшем остается постоянным у представителей разных филетических линий в течение значительных промежутков времени

Критерии биологического прогресса
ü возрастание степени общей приспособленности группы организмов к условиям окружающей среды; ü увеличение численности особей группы; ü расширение ареала, занимаемог

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги