рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ОЗУ с произвольным доступом

ОЗУ с произвольным доступом - раздел Компьютеры, Организация ЭВМ и систем   В Оперативных Зу С Произвольным Доступом (Random Access Me...

 

В оперативных ЗУ с произвольным доступом (Random Access Memory - RAM) запись или чтение осуществляется по адресу, указанному регистром адреса (РА). Информация, необходимая для осуществления процесса записи - чтения (адрес, данные и управляющие сигналы), поступает из процессора (см. рисунок 3.3.1). В ЗУ с произвольным доступом, на обращение по любому адресу уходит одно и то же время. Этим RAM-память отличается от запоминающих устройств с после­довательным доступом, таких как магнитные ленты. Время доступа последних зависит от адреса (местоположе­ния) данных.

 
 

 

 

Рисунок 3.3.1- Структура микросхем RAM

 

Адрес, поступающий из процессора, фиксируется в регистре адреса РА микросхемы, дешифрируется с помощью ДшА и выбирает нужную ячейку запоминающего массива. По сигналу запись Зп производится запись данных в заданную ячейку памяти, по сигналу чтения Чт - выборка данных. Сигнал выборки кристалла ВК (CS - Chip Selekt) предназначен для выбора адресуемой микросхемы памяти.

Усилители записи и считывания обеспечивают физический процесс записи - чтения запоминающего элемента массива при выработке соответствующих сигналов блока управления БУП. При чтении содержимое адресованной ячейки памяти через регистр данных поступает на ШД процессора. Если при считывании содержимого ячейки памяти происходит его разрушение, то после выдачи данных на ШД процессора необходимо восстановление (регенерация) содержимого ячейки.

Запоминающий массив RAM содержит множество одинаковых запоминающих элементов статического либо динамического типов. Если запоминающие элементы памяти могут сохранять свое состояние до тех пор, пока на них подано питание (Vпит), то такая память называется статической (SRAM). Возможная реализация запоминающего элемента ячейки памяти на КМОП- транзисторах показана на рисунке 3.3.2.

 

 

Рисунок 3.3.2- Схема ячейки памяти на КМОП- транзисторах

 

Для запоминания одного бита информации в приведенной схеме используется триггер, который образуют транзисторы T3, Т5 и T4, Т6. В состоянии “лог 1” напряжение в точке X будет иметь высокий уровень напряжения за счет того, что тран­зисторы T3 и T6 открыты, а транзисторы Т5 и T4 закрыты. Таким образом, ес­ли транзисторы T1 и T2, управляемые сигналами на линии слова, открыты, то напряжение на линии бита b будет высоким, а на линии бита b' - низким.

Время записи- считывания (доступа) информации современных микросхем статической памяти составляет несколько наносекунд. Поэтому статическая память используется в первую очередь в тех устройствах, где требуется малое время записи- чтения информации.

Статическая RAM является быстродействующей памятью, но ее габариты и стоимость не всегда приемлемы, поскольку каждая ее ячейка, хранящая 1 бит информации, реализуется на 6-ти транзисторах. Поэтому производителями выпускается дешевая память с более простой конструкцией запоминающих элементов. Однако они требуют постоянного обновления записанной информации, поскольку не способны долго сохранять свое состояние. Такая память называется динамической (DRAM- Dynamic RAM). В ячейке динамической памяти (см. рисунок 3.3.3) информация хранится в виде заряда конденсатора, и этот заряд может сохраняться всего несколько единиц или десятков миллисекунд из-за утечки заряда. Поскольку информация в памяти должна сохраниться все время, в течение которого на память подается напряжения питания, содержимое каждой ячейки динамической памяти должно периодически обновляться путем восстановления заряда конденсаторов запоминающих элементов. Такая операция называется регенерацией информации. Для регенерации информации содержимое ячеек памяти считывается и вновь записывается на прежнее место (см. пунктирную линию на рисунке 3.3.1).

Рисунок 3.3.3- Упрощенная схема запоминающего элемента ячейки динамической памяти

3.4 Организация микросхем SRAM

Полупроводниковая память реализуется в виде микросхем с очень разным быстро­действием. Длительность их цикла варьируется от 100 нс до менее чем 10 нс. Появив­шиеся в конце 1960-х полупроводниковые схемы памяти первоначально были гораздо дороже доминирующей в это время памяти на магнитных (ферритовых) сердечниках. Однако стремительное развитие технологии СБИС позволило быстро снизить их стои­мость, и в настоящее время практически вся память реализуется в виде полупроводниковых микросхем.

В каждом запоминающем элементе памяти может хра­ниться один бит информации. Запоминающие элементы объединяются в ячейки памяти длиной в k- бит которые, в свою очередь, объединяются в массивы матричной структуры, состоящих из строк и столбцов. Каждая строка матрицы составляет слово памяти, а все ячейки строки выбираются общей линией, называемой линией слова, которая управляется входя­щим в состав кристалла памяти дешифратором адреса строки. Во время операции чтения информация из выбранной строки пересы­лается на выходные линии данных микросхемы. В процессе операции записи входная информация записывается в ячейки выбранной строки.

Рассмотрим организацию микросхемы памяти на 1 К (1024) бит. Память такого объема может быть организована в виде массива из 128 слов с длиной по 8 бит (Байт) каждое. Для адресации 128 слов потребуется log2128=7 разрядов адреса. Вместе с 8-ю линиями данных при такой организации массива в микросхеме необходимо 15 внешних выводов (без учета выводов для питания и управляющих сигналов). В оптимальных (по количеству выводов) вариантах то же количество ячеек можно организовать в виде массивов 512x2 бит или 1 К х 1 бит. В последнем случае понадобится 10-разрядный адрес и одна линия данных, а, следова­тельно, 11 внешних выводов. Эта организация показана на рисунке 3.4. В ней 10-разрядный адрес делится на две части по пять разрядов в каждой, представ­ляющих адреса строки и столбца массива ячеек. Пять разрядов адреса строки выделяют одну из 32-х строк массива длиной в 32 бита, позволяя им поступать через усилители записи- чтения на мультиплексор. Пять разрядов адре­са столбца с помощью мультиплексора 32 х 1 соединяют с внешней линией данных только адресованный бит.

 

 

Рисунок 3.4- Структура микросхемы SRAM с организацией 1К х 1 бит

 

Современные микросхемы памяти содержат гораздо большее количество яче­ек. Микросхемы SRAM большей емкости и разрядности построены по такой же структуре, но со­держат массивы большего размера и имеют большее число внешних соединений. Например, 4-мегабитовая микросхема памяти может иметь организацию 512 К х 8 бит, для ко­торой понадобятся 19 адресных выводов и 8 выводов для ввода-вывода данных. В настоящее время выпускаются микросхемы SRAM емкостью в сотни кбит адресуемых единиц. Количество адресуемых слов микросхемы памяти оп­ределяет размер ее адресного пространства.

 

– Конец работы –

Эта тема принадлежит разделу:

Организация ЭВМ и систем

Содержание... ОБЩИЕ СВЕДЕНИЯ О ЭВМ Этапы развития ЭВМ Характеристики ЭВМ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ОЗУ с произвольным доступом

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Этапы развития ЭВМ
Идея использования программного управления для по­строения устройств, автоматически выполняющих арифмети­ческие вычисления, была впервые высказана английским мате­матиком Ч. Бэббиджем в 1833 г. Одн

Характеристики ЭВМ
Важнейшими характеристиками ЭВМ являются быстродействие и производительность. Эти характеристики тесно связаны. Быстродействие характеризуется числом команд, выполняемых ЭВМ за одну секунду. Быстро

Обобщенная структура ЭВМ
  Обобщенная структура ЭВМ приведена на рисунке 1.4.1. В состав ЭВМ входят: запоминающие устройства (ЗУ), процессор, устройства ввода и вывода (УВВ). Процессор предназначен д

Структура ЭВМ на основе общей шины
  При организации ЭВМ на основе общей шины (ОШ) взаимодействие между ее устройствами осуществляется через общую шину, к которой подключены все устройства, входящие в состав ЭВМ.

Структура ЭВМ на основе множества шин
По такому принципу построены современные компьютеры. На рисунке 1.4.3.1 показана 2-х шинная структура ЭВМ, в которой выделена одна шина для памяти, а вторая шина используется для подключения устрой

Принцип программного управления
Принцип программного управления заключается в том, что алгоритм вычислений (например, вычисление некоторого выражения) представляется в виде упорядоченной последовательности команд, преобразующих и

Принцип хранимой в памяти программы
Принцип хранимой в памяти программы был предложен Дж. фон Нейманом в 1945 году. Этот принцип стал основой современных машин. В соответствии с этим принципом команды хранятся в памяти, также как и д

Обобщенный формат команд
Команды в ЦВМ могут быть одноадресными, двухадресными и трехадресными (в машинах с так называемой естественной адресацией команд). Формат одноадресной команды следующий:

Процессоры с принудительным порядком выполнения команд
Упрощенная структура процессора с принудительной адресацией команд приведена на рисунке 2.4.1. Рису

Процессоры с естественной адресацией команд
Упрощенная структура процессора с естественной адресацией команд приведена на рисунке 2.4.2. Рисуно

Прямая адресация
    При прямой адресации

Регистровая адресация
    Регистровая адресация

Косвенная адресация
  При косвенной адресации в адресной части команды указывается адрес ячейки памяти, в которой находится адрес операнда (косвенная адресация - это адресация адреса). Косвенный

Непосредственная адресация
В поле адреса команды находится не адрес, а сам операнд. В отличие от других типов адресации, при выполнении команд с непосредственной адресацией отсутствует дополнительный цикл обращения в память

Относительная (базовая) адресация
Адрес операнда определяется как сумма содержимого адресного поля команды и некоторого числа, называемого базовым адресом. Базовый адрес является косвенным. Для указания его адреса в команде предусм

Индексная (автоинкрементная или автодекрементная) адресация
При обработке больших массивов данных, выбираемых последовательно друг за другом, нет смысла каждый раз обращаться в память за новым адресом.Для этого достаточно автоматически менять содержимое спе

Организация динамической памяти
Структура микросхем динамической памяти (DRAM) в целом близка к структуре микросхем статической памяти. Однако для уменьшения количества выводов в микросхемах динамической памяти используетс

Особенности микросхем синхронной динамической памяти
Описанная динамическая память управляется в асинхронном ре­жиме. Она тактируется только управляющими сигналами RAS и CAS и момент готовности микросхемы к обмену информацией с процессо

Основные характеристики ЗУ
1. Емкость памяти. Является важнейшей характеристикой ЗУ любого типа. Она определяет максимальное количество информации, которое может в ней храниться. Емкость может измеряться в битах, байтах или

ОЗУ магазинного типа (стековая память)
  Cтековая память широко используется в ЭВМ для запоминания содержимого регистров процессора (контекста прерываемой программы), при обработке запросов на прерывания и вызове подпрогра

Ассоциативные ЗУ
Всовременных вычислительных системах широкоиспользуются операция поиска информации. При использовании обычной памяти с адресным принципом доступа к данным эта операция занимает много времени, поско

Обобщенные структуры процессоров с непосредственными и магистральными связями
Основными функциями процессора являются: - организация обращений в ОП за командами и операндами; - дешифрация и выполнение команд; - инициация работы периферийных устройс

Декомпозиция процессора на УА и ОУ
Основу процессора составляют устройство управления (УУ) и арифметическое устройство (арифметико-логическое устройство- АЛУ) (см. рисунок 4.2). Устройство управления реализует функции управления ход

АЛУ для сложения и вычитания чисел с фиксированной запятой
Операция сложения в АЛУ обычно сводится к арифметическому сложению кодов чисел путём применения инверсных кодов - дополнительного или обратного для представления отрицательных чисел. Обратный код и

Методы ускорения умножения
Методы ускорения умножения делятся на аппаратурные и логические. Как те, так и другие требуют дополнительных затрат оборудования. При использовании аппаратурных методов дополнительные затраты обору

Особенности операций десятичной арифметики
Арифметические операции над десятичными числами (сло­жение, вычитание, умножение, деление) выполняются аналогич­но операциям над целыми двоичными числами. Основой АЛУ десятичной арифметики является

Аппаратные УУ
Управляющие устройства с жесткой логикой представляют собой логические схемы, вырабатывающие распределенные во времени управляющие сигналы. В отличие от управляющих устройств с хранимой в памяти ло

Микропрограммные УУ
Альтернативой аппаратного способа реализации УУ является микро­программное управление, согласно которому сигналы генерируются программой, подобной программе, написанной на машинном языке для ЭВМ. Э

Рабочий цикл процессора
Функционирование процессора состоит из повторяющихся рабочих циклов, каждый из которых соответствует выполнению либо целой команды, либо её части. Завершив рабочий цикл процессор переходит к выполн

Понятие о слове состояния процессора
В ходе функционирования процессора постоянно меняется состояние его внутренних регистров. Сигнал “Запрос на прерывание”, а также команда “Вызов подпрограммы” приводят к прекращению выполнения основ

Процедура выполнения команд перехода (условного и безусловного)
При естественной адресации адрес следующей команды получается из адреса выполняемой команды увеличением его на шаг адресации (1, 2, 4 и т.д. в зависимости от количества байт в команде). Производитс

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги