рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Алгоритм RSA

Алгоритм RSA - раздел Компьютеры, Методы и средства защиты компьютерной информации   Первой И Наиболее Известной Криптографической Системой С Откр...

 

Первой и наиболее известной криптографической системой с открытым ключом была предложенная в 1978 году так называемая система RSA. Ее название происходит от первых букв фамилий авторов Rivest, Shamir и Aldeman, которые придумали ее во время совместных исследований в Массачусетском технологическом институте в 1977 году. Она основана на трудности разложения очень больших целых чисел на простые сомножители. Алгоритм ее работает так:

1. Выбрать два больших простых числа p и q и вычислить два произведения n = p · q и j = (p – 1) · (q – 1).

2. Выбирать случайное целое число e, такое что НОД(e, j) = 1.

3. Вычислить d, удовлетворяющее условию e·d º 1 (mod j). (Такое число d существует на основании теоремы о количестве решений сравнения первой степени.)

4. Числа e и n публикуются как открытый ключ шифрования, а число d сохраняется как закрытый ключ.

5. Если m – сообщение, длина которого, определяемая по значению выражаемого им целого числа, должна быть в интервале (1, n), то оно превращается в шифровку возведением в степень e по модулю n и отправляется получателю .

6. Получатель сообщения расшифровывает его, возводя в степень d по модулю n, так как .

Рассмотрим математические результаты, положенные в основу этого алгоритма. Т.к. ed º 1 (mod j), то существует целое число k, такое что ed = 1 + kj. В соответсвии с теоремой Ферма о том, что если НОД(m, p) = 1, то

mp–1 º 1 (mod p).

Возведем обе части сравнения в степень k(q–1), затем умножим обе части на a.

m1+k(p–1)(q–1) º m (mod p) или med º m (mod p).

С другой стороны, если D(m, p) = p, то последнее сравнение опять будет выполняться, так как каждая его часть сравнима с 0 по модулю p. Таким образом, в обоих случаях имеем

med º m (mod p).

Аналогично показывается, что

med º m (mod q).

Т.к. p и q простые, то получим

med º m (mod n),

а это эквивалентно пункту 6 алгоритма. (Последнее сравнение следует из того, что если a º b (mod m1), ..., a º b (mod mk), то a º b (mod HOK(m1, ..., mk)), где HOK(...) – наименьшее общее кратное чисел, указанных в скобках.)

Криптостойкость системы RSA основана на том, что j не может быть просто вычислено без знания простых сомножителей p и q, а нахождение этих сомножителей из n считалась трудно разрешимой задачей. Однако недавние работы по разложению больших чисел на сомножители показали, что для этого могут быть использованы разные и даже совершенно неожиданные средства. Сначала авторы RSA предлагали выбрать простые числа p и q случайно, по 50 десятичных знаков каждое. Считалось, что такие большие числа очень трудно разложить на простые сомножители при криптоанализе. Райвест полагал, что разложение на простые множители числа из почти что 130 десятичных цифр, приведенного в их публикации, потребует более 40 квадриллионов лет машинного времени. Но математики Ленстра из фирмы Bellcore и Манасси из фирмы DEC разложили число из 155 десятичных цифр на простые сомножители всего за 6 недель, соединив для этого 1000 ЭВМ, находящихся в разных странах мира. Выбранное число, называемое девятым числом Ферма, с 1983 года находилось в списке чисел, разложение которых считалось наиболее желательным. Это число взято потому, что оно считалось неразложимым при существующей вычислительной технике и достаточно большим для того, чтобы его можно считать безопасным для формирования n в RSA. Как заявил Ленстра, ведущий в Bellcore исследования по электронной защите информации и разложению больших чисел, их целью было показать разработчикам и пользователям криптографических систем, с какими угрозами они могут встретиться и насколько осторожны должны быть при выборе алгоритмов шифрования. По мнению Ленстра и Манасси, их работа компрометирует и создает большую угрозу применениям криптографических систем RSA.

Следует учесть, что работа по совершенствованию методов и техники разложения больших чисел только началась и будет продолжена. Те же Ленстра и Манасси в 1991 году нашли делитель тринадцатого числа Ферма, которое состоит примерно из 2500 десятичных разрядов. Теперь разработчикам криптографических алгоритмов с открытым ключом на базе RSA приходится как чумы избегать применения разложимых чисел длиной менее 200 десятичных разрядов. Самые последние публикации предлагают для этого применять числа в 250 и даже 300 десятичных разрядов. А так как для щифрования каждого блока информации приходится соответствующее число возводить в колоссально большую степень по модулю n, то для современных компьютеров это задача на грани возможного. Поэтому для практической реализации шифрования RSA радиоэлектроники начали разрабатывать специальные процессоры, которые позволили бы выполнять операции RSA достаточно быстро. Лучшими из серийно выпускаемых кристаллов являются процессоры фирмы CYLINK, которые позволяют выполнять возведение в степень целого числа из 307 десятичных знаков за доли секунды. Отметим, что чрезвычайно слабое быстродействие криптографических систем на основе RSA лишь ограничивает область их применения, но вовсе не перечеркивает их ценность.

 

 

– Конец работы –

Эта тема принадлежит разделу:

Методы и средства защиты компьютерной информации

Факультет электронной техники.. Кафедра Автоматизированные системы обработки информации и управления..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Алгоритм RSA

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Актуальность защиты систем обработки информации
  В современном компьютерном сообществе атаки на информацию стали обыденной практикой. Злоумышленники используют как ошибки в написании и администрировании программ, так и методы соци

Угрозы безопасности компьютерных систем
  Под угрозой безопасности вычислительной системы понимаются воздействия на систему, которые прямо или косвенно могут нанести ущерб ее безопасности. Разработчики треб

Наиболее распространенные методы взлома компьютерных систем
  1.3.1. Комплексный поиск возможных методов взлома   Часто злоумышленники проникают в систему не напрямую, «сражаясь» с системами шифрован

Терминалы защищенной информационной системы
Терминалы – это точки входа пользователя в информационную сеть. В том случае, когда к ним имеют доступ несколько человек или вообще любой желающий, при их проектировании и эксплуат

Получение пароля на основе ошибок администратора и пользователей
  Перебор паролей по словарю являлся некоторое время одной из самых распространенных техник подбора паролей. В настоящее время, как хоть самый малый результат пропаганды информационно

Получение пароля на основе ошибок в реализации
  Следующей по частоте использования является методика получения паролей из самой системы. Однако, здесь уже нет возможности дать какие-либо общие рекомендации, поскольку все методы а

Социальная психология и иные способы получения паролей
  Иногда злоумышленники вступают и в прямой контакт с лицами, обладающими нужной им информацией, разыгрывая довольно убедительные сцены. «Жертва» обмана, поверившая в реальность расск

Задачи, решаемые криптографическими методами
  О важности информации в современном мире наиболее показательно свидетельствуют следующие факты. Во-первых, обладание определенным цифровым кодом может открыть доступ его владельцу к

Краткие сведения о криптоанализе
  Криптоанализ как наука выходит за рамки данного курса, однако знание некоторых его положений необходимо для глубокого понимания криптографии. Главным действующим лицом в кр

Мера стойкости шифра
  Шифром называется пара алгоритмов (E и D), реализующих каждое из указанных выше преобразований. Секретность второго из них делает данные недоступными

Необходимое условие абсолютной стойкости шифра
  Естественно, основной вопрос, который интересовал криптографов, это существуют ли на практике абсолютно стойкие шифры. Специалистам было интуитивно понятно, что они существуют, и пр

Принцип Кирхгофа построения шифров
  Исходя из сказанного выше, можно перечислить несколько качеств, которым должен удовлетворять шифр, претендующий на то, чтобы считаться хорошим. 1. Анализ зашифрованных данн

Шифры с секретным ключом
  Итак, наша задача заключается в том, чтобы снабдить участников обмена надежными алгоритмами шифрования. Первый вопрос, который мы себе зададим – это решаема ли задача в принципе, и

Базовая идея блочного шифра
  Отправной точкой в реализации рассматриваемого подхода является идея вырабатывать гамму для зашифрования сообщения … из самого сообщения! Однако сделать это непосредственно невозмож

Шифр простой замены
  Для того, чтобы блочная схема шифрования была устойчива к криптоанализу, она должна обладать свойствами перемешивания и рассеивания. Это означает, что каждый бит исходного текста до

Недостатки режима простой замены
  Использование блочного шифра в режиме простой замены имеет ряд недостатков, отражающихся на стойкости и удобстве использования шифра. Первый и самый серьезный недостаток простой зам

Гаммирование
  Предложенная в предыдущем разделе процедура шифрования по методу простой замены с использования датчика псевдослучайных чисел может быть слегка изменена, что освободит ее от ряда не

Гаммирование с обратной связью
  При синтезе алгоритма блочного шифрования мы уже сталкивались с идеей вырабатывать гамму для шифрования очередного блока данных с использованием одного или нескольких предыдущих бло

Имитозащита
  Как мы уже неоднократно демонстрировали в примерах, шифрование само по себе не может защитить передаваемые данные от внесения изменений. Это является отражением того факта, что секр

Сравнения и их свойства
  Мы будем рассматривать целые числа в связи с остатками от деления их на целое положительное m, которое назовем модулем (слово “модуль” происходит от латинско

Вычисление степеней, возведение сравнений в степень
  Многие результаты теории сравнений связаны с остатками высоких степеней чисел, поэтому обсудим интересную задачу эффективного вычисления xn по заданным x и

Сравнения с одним неизвестным
  Числа, равноостаточные, или, что то же самое, сравнимые по модулю m, образуют класс чисел по модулю m. Из такого определения следует, что всем числам класса о

Наибольший общий делитель
  Если u и v – целые числа, не оба рвные нулю, то их наибольшим общим делителем D(u, v) называется наибольшее целое число, на которое делятся без ос

Простые числа
  Едва освовив четыре арифметических действия, люди стали интересоваться различными свойствами натуральных чисел. Почему некоторые числа делятся на меньшие без остатка, в то время как

Теоремы Эйлера и Ферма
  Теорема (Эйлера). При m > 1 и D(a,m) = 1 имеем aj(m) º 1 (mod m).

Однонаправленные функции
  Развитие криптографии в XX веке было стремительным, но неравномерным. Анализ истории ее развития как специфической области человеческой деятельности выделяет три основных периода.

Практическое использование алгоритма RSA
  Для алгоритмов, основанных на открытых ключах, существует ряд математических проблем, которые не всегда учитываются при построении криптосистемы. К ним можно отнести выбор начальных

Открытое распределение ключей
  Пока преимущества методов шифрования с открытым ключом не были очевидны. Однако на их основе легко решать задачу выработки общего секретного ключа для сеанса связи любой пары пользо

Электронная подпись
  В чем состоит проблема аутентификации данных? В конце обычного письма или документа исполнитель или ответственное лицо обычно ставит свою подпись. Подобное действие обычно преследуе

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги