рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Круговое вращающееся магнитное поле

Круговое вращающееся магнитное поле - раздел Физика, Магнитные цепи с постоянной магнитодвижущей силой   Если На Статоре Электрической Машины Разместить Трехфазную Об...

 

Если на статоре электрической машины разместить трехфазную обмотку, у которой оси фаз (A-X, B-Y, C-Z) сдвинуты в пространстве на (рис. 2.21)

Рис. 2.21. Расположение фазных обмоток на статоре двухполюсной трехфазной машины.

 

то при питании ее симметричным трехфазным током получим круговое вращающееся магнитное поле. На рис.2.21 фазовые обмотки для простоты показаны сосредоточенными, но распределение НС, образуемое каждой обмоткой, следует считать синусоидальным. Ввиду того, что в рассматриваемой обмотке фазы A-X, B-Y и C-Z смещены в пространстве на (), а токи в них сдвинуты во времени на (), получим следующие выражения для составляющих НС в точке x от каждой из фаз:

;

;

.

Результирующую НС в точке x можно получить сложив отдельные составляющие . При этом обратновращающиеся волны НС исчезают, а результирующая НС оказывается равной

. (2.28)

Полученное уравнение бегущей волны позволяет в любой момент времени t найти точку x, в которой НС максимальна и равна . Для этого нужно принять значение и, подставляя (), решить уравнение относительно x. Нетрудно убедиться, что при изменении () в указанном диапазоне максимальное значение НС переместится с до , т. е. за один период изменения питающего напряжения бегущая волна НС переместится в воздушном зазоре машины на расстояние, равное или с учетом выражения

(2.29)

она совершит 1/p оборота вокруг оси машины.

Очевидно, что:

За (pT) секунд бегущая волна совершит 1 полный оборот вокруг оси машины, а

за 1минуту (60 секунд) – n оборотов.

Приведенная пропорция позволяет найти выражения для скорости вращения магнитного поля в рабочем зазоре машины :

(2.30)

В общем случае, когда по симметричной т-фазной обмотке, фазы которой сдвинуты в пространстве на угол , протекают переменные токи, сдвинутые во времени на угол , уравнение бегущей волны НС имеет вид

. (2.31)

Так, например, в двухфазной обмотке с фазами, смещенными в пространстве на половину полюсного деления, создается круговое вращающееся магнитное поле, если по ее фазам протекают симметричные токи, сдвинутые во времени на угол . Уравнение бегущей волны для такой обмотки имеет вид

. (2.32)

Круговое вращающееся магнитное поле обладает следующими свойствами:

а) максимум результирующих волн НС и индукции всегда совпадают с осью той фазы, в которой ток имеет максимум. Это положение легко проверить, задаваясь величиной , соответствующей максимуму тока в фазе, и определяя координату точки в которой намагничивающая сила максимальна;

б) магнитное поле перемещается в сторону оси той фазы, в которой ожидается ближайший максимум. Это свойство непосредственно следует из предыдущего;

в) для изменения направления вращения поля необходимо изменить порядок чередования тока в фазовых обмотках. В трехфазных машинах для этой цели следует поменять местами провода, подводящие ток из трехфазной сети к двум любым фазам обмотки; в двухфазных - переключить провода, присоединяющие две фазы обмотки сети.

 

– Конец работы –

Эта тема принадлежит разделу:

Магнитные цепи с постоянной магнитодвижущей силой

На сайте allrefs.net читайте: "Магнитные цепи с постоянной магнитодвижущей силой"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Круговое вращающееся магнитное поле

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Расчет магнитной цепи постоянного магнита
  Постоянные магниты широко применяются в измерительных приборах, реле, генераторах и т. д.

Механические усилия в магнитном поле
  На проводник с током I, помещенный в магнитное поле индукции B, воздействует сила, направление которой определяется правилом левой руки (если вектор

Магнитная цепь с переменной магнитодвижущей силой (МДС)
  На рис. 1.7а показана схема подключения катушки с ферромагнитным сердечником к источнику синусоидального напряжения.

Основные соотношения для однофазного трансформатора
Трансформатор состоит из двух или более обмоток, расположенных

Холостой ход трансформатора
  При холостом ходе трансформатора имеем (1.26)

Режим нагрузки трансформатора
Поток в магнитопроводе в режиме холостого хода трансформатора . При подк

Режим короткого замыкания трансформатора
  Режимом короткого замыкания называется режим, при котором вторичная обмотка замкнута накоротко. Если при опыте холостого хода определяются потери в сердечнике трансформатора, то при

Особенности работы трехфазных трансформаторов
  Все соотношения, которые мы получили для однофазных трансформаторов, справедливы и для трехфазных трансформаторов, точнее для одной фазы трансформатора, нагруженного симметрично.

Измерительные трансформаторы
  Измерительные трансформаторы применяются для изоляции измерительных приборов от высокого напряжения и расширения пределов измерения вольтметров и амперметров (рис.1.32). &n

Получение кругового вращающегося магнитного поля
  Круговым вращающимся магнитным полем называется поле, вектор результирующей магнитной индукции которого неизменен и вращается с постоянной угловой скоростью. Рассмотрим, как изменяе

Асинхронная электрическая машина
  Самым распространенным двигателем в промышленности является асинхронный двигатель. На рис.2.10 показаны конструкция и схема включения статорных и роторных обмоток трехфазного асинхр

Регулирование скорости вращения асинхронных двигателей
  Скорость вращения асинхронного двигателя определяется зависимостью

Создание вращающегося магнитного поля
  Индукция в воздушном зазоре электрической машины переменного тока определяется распределением НС вдоль окружности статора. Если пренебречь магнитным сопротивлением ферромагни

Пульсирующее поле
  б) а) П

Эллиптическое поле
  Круговое вращающееся магнитное поле возникает только при симметрии токов, проходящих по катушкам (симметрии НС катушек отдельных фаз), при симметричном расположении этих кату

Требования, предъявляемые к исполнительным двигателям
  Помимо общих требований (предъявляемых ко всем машинам: малые габариты и вес, дешевизна, высокий КПД, надежность и т.д.), к исполнительным двигателям предъявляются и специфические т

Уравнения токов идеализированного двигателя
  Воспользуемся упрощенными схемами замещения ротора, в которых пренебрегается индуктивными сопротивлениями рассеяния ротора (рис. 2.26а, б):  

Механические характеристики
  Электромагнитные мощности для полей прямой и обратной последовательностей:    

Регулировочные характеристики
  Эти характеристики показывают, как изменяется скорость исполнительного двигателя при изменении коэффициента сигнала, если момент (нагрузка) на валу двигателя остается неизменным. Ур

Мощности управления и возбуждения
  Ток идеализированного двигателя является чисто активным, поэтому мощности обмоток управления и возбуждения будут определяться следующим образом:

Механическая мощность
  Механическая мощность двигателя в относительных единицах

Исполнительный двигатель с фазовым управлением
  Напряжения прямой и обратной последовательностей (как было показано выше):

Механические и регулировочные характеристики идеализированного двигателя
  Электромагнитная мощность с учетом выражения для и

Мощность управления
  Фазовое управление применяется сравнительно редко из-за большой мощности управления при малом коэффициенте сигнала. Так при неподвижном роторе полная мощность обмотки управ

Механические характеристики
  В реальном исполнительном двигателе с амплитудно-фазовым управлением регулируется напряжение управления

Сравнение исполнительных двигателей при различных методах управления
  Проведенный анализ позволяет сделать следующие выводы: а) линейность механических и регулировочных характеристик выше всего при фазовом управлении. Амплитудно-фазовое управ

Машины постоянного тока
  4.1. Устройство, принцип действия и электромагнитный момент машины постоянного тока   Устройство машины постоянного тока подобно обращенной синхронно

Получение кругового вращающегося магнитного поля . . . . . . . . . . . . . 28
2.2. Основные принципы выполнения многофазных обмоток. . . . . . . . .

Методах управления. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.Синхронные электрические машины.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 3.1. Общие сведения. . . . . . . . . .. . . .. . . . . . . . . . . . . . .

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги