рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Режим короткого замыкания трансформатора

Режим короткого замыкания трансформатора - раздел Физика, Магнитные цепи с постоянной магнитодвижущей силой   Режимом Короткого Замыкания Называется Режим, При Котором Вто...

 

Режимом короткого замыкания называется режим, при котором вторичная обмотка замкнута накоротко. Если при опыте холостого хода определяются потери в сердечнике трансформатора, то при опыте короткого замыкания определяются потери в обмотках трансформатора. На первичную обмотку трансформатора подается напряжение такой величины, при которой ток в первичной цепи равен номинальному. При этом измеряется мощность, потребляемая трансформатором из сети, напряжение, ток (рис.1.22):

 

а)

 

б)

Рис.1.22. Схемы измерения тока, напряжения и мощности в режиме к. з. трансформатора (а), схема замещения приведенного трансформатора в режиме к.з. (б).

 

Величина Uк составляет 5-10% номинального напряжения. Так как поток прямо пропорционален напряжению питания трансформатора, а потери в сердечнике пропорциональны квадрату потока, то в режиме короткого замыкания потерями в сердечнике можно пренебречь. Током холостого хода также пренебрегают, так как его величина незначительна по сравнению с Iном. Поэтому gn и bф в схеме замещения трансформатора в режиме короткого замыкания отсутствуют.

Параметры трансформатора определяются выражениями:

(1.36)

 

1.5.6. Падение напряжения в трансформаторе и его КПД

 

Для определения напряжения на нагрузке трансформатора воспользуемся его упрощенной схемой замещения без намагничивающего контура (рис.1.23а):

 

 

 

 

a) б)

 

Рис.1.23. Схема замещения приведенного трансформатора без учета контура намагничивания (а) и его векторная диаграмма в режиме нагрузки (б).

 

Погрешность определения тока I1, вызванная таким упрощением, при нагрузках, близких к номинальной, составляет величину порядка 0,1%, что вполне допустимо. Обычно падение напряжения в трансформаторе определяется разностью вторичного напряжения трансформатора при холостом ходе U20 и в режиме нагрузки в процентах по отношению к :

U%=%=%.

При холостом ходе отсутствуют падения напряжения в обмотках трансформатора. Поэтому, приняв , получим

U%=%.

Эта величина называется относительной потерей напряжения. Ввиду того, что можно приближенно за модуль принять его проекцию на направление вектора , т.е. отрезок (рис.1.23б).

Тогда

.

Из рис.1.23б получаем:

;

U%=%.

При номинальной нагрузке

Uн%=%

или

Uн%=Ukacos+ Ukr sin,

где

Uka=и Ukr=% - активная и реактивная составляющие напряжения короткого замыкания в процентах от U.

 

Для относительного падения напряжения, соответствующего току I1 получаем

 

, (1.37)

где:

– коэффициент нагрузки.

Так как

, (1.38)

 

а , ,

 

Рис.1.24. К расчету формулы 1.38.

 

то

(1.39)

 

Окончательно имеем

, (1.40)

где

. (1.41)

 

 

 

Рис.1.25 Внешняя характеристика трансформатора.

 

Высокие значения КПД трансформатора не позволяют определить его с достаточной точностью путем непосредственного измерения мощности, потребляемой от сети и мощности, отдаваемой нагрузке . Поэтому, согласно требованиям ГОСТа, его вычисляют косвенным методом по данным опытов холостого хода и короткого замыкания. Точность этого метода приемлема для практики.

Зависимость активной мощности трансформатора от коэффициента нагрузки b может быть выражена следующим образом:

. (1.42)

При опыте холостого хода ток I10 невелик, и потерями мощности в первичной обмотке можно пренебречь. Следовательно, с достаточной степенью точности можно считать, что потери в сердечнике трансформатора определяются мощностью, потребляемой из сети при номинальном напряжении сети: .

Из схемы замещения (без учета тока намагничивания) трансформатора имеем для режима к. з.:

.

Коэффициентом полезного действия трансформатора называют отношение отдаваемой мощности к мощности, потребляемой из сети:

; ;

. (1.43)

 

 

– Конец работы –

Эта тема принадлежит разделу:

Магнитные цепи с постоянной магнитодвижущей силой

На сайте allrefs.net читайте: "Магнитные цепи с постоянной магнитодвижущей силой"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Режим короткого замыкания трансформатора

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Расчет магнитной цепи постоянного магнита
  Постоянные магниты широко применяются в измерительных приборах, реле, генераторах и т. д.

Механические усилия в магнитном поле
  На проводник с током I, помещенный в магнитное поле индукции B, воздействует сила, направление которой определяется правилом левой руки (если вектор

Магнитная цепь с переменной магнитодвижущей силой (МДС)
  На рис. 1.7а показана схема подключения катушки с ферромагнитным сердечником к источнику синусоидального напряжения.

Основные соотношения для однофазного трансформатора
Трансформатор состоит из двух или более обмоток, расположенных

Холостой ход трансформатора
  При холостом ходе трансформатора имеем (1.26)

Режим нагрузки трансформатора
Поток в магнитопроводе в режиме холостого хода трансформатора . При подк

Особенности работы трехфазных трансформаторов
  Все соотношения, которые мы получили для однофазных трансформаторов, справедливы и для трехфазных трансформаторов, точнее для одной фазы трансформатора, нагруженного симметрично.

Измерительные трансформаторы
  Измерительные трансформаторы применяются для изоляции измерительных приборов от высокого напряжения и расширения пределов измерения вольтметров и амперметров (рис.1.32). &n

Получение кругового вращающегося магнитного поля
  Круговым вращающимся магнитным полем называется поле, вектор результирующей магнитной индукции которого неизменен и вращается с постоянной угловой скоростью. Рассмотрим, как изменяе

Асинхронная электрическая машина
  Самым распространенным двигателем в промышленности является асинхронный двигатель. На рис.2.10 показаны конструкция и схема включения статорных и роторных обмоток трехфазного асинхр

Регулирование скорости вращения асинхронных двигателей
  Скорость вращения асинхронного двигателя определяется зависимостью

Создание вращающегося магнитного поля
  Индукция в воздушном зазоре электрической машины переменного тока определяется распределением НС вдоль окружности статора. Если пренебречь магнитным сопротивлением ферромагни

Пульсирующее поле
  б) а) П

Круговое вращающееся магнитное поле
  Если на статоре электрической машины разместить трехфазную обмотку, у которой оси фаз (A-X, B-Y, C-Z) сдвинуты в пространстве на

Эллиптическое поле
  Круговое вращающееся магнитное поле возникает только при симметрии токов, проходящих по катушкам (симметрии НС катушек отдельных фаз), при симметричном расположении этих кату

Требования, предъявляемые к исполнительным двигателям
  Помимо общих требований (предъявляемых ко всем машинам: малые габариты и вес, дешевизна, высокий КПД, надежность и т.д.), к исполнительным двигателям предъявляются и специфические т

Уравнения токов идеализированного двигателя
  Воспользуемся упрощенными схемами замещения ротора, в которых пренебрегается индуктивными сопротивлениями рассеяния ротора (рис. 2.26а, б):  

Механические характеристики
  Электромагнитные мощности для полей прямой и обратной последовательностей:    

Регулировочные характеристики
  Эти характеристики показывают, как изменяется скорость исполнительного двигателя при изменении коэффициента сигнала, если момент (нагрузка) на валу двигателя остается неизменным. Ур

Мощности управления и возбуждения
  Ток идеализированного двигателя является чисто активным, поэтому мощности обмоток управления и возбуждения будут определяться следующим образом:

Механическая мощность
  Механическая мощность двигателя в относительных единицах

Исполнительный двигатель с фазовым управлением
  Напряжения прямой и обратной последовательностей (как было показано выше):

Механические и регулировочные характеристики идеализированного двигателя
  Электромагнитная мощность с учетом выражения для и

Мощность управления
  Фазовое управление применяется сравнительно редко из-за большой мощности управления при малом коэффициенте сигнала. Так при неподвижном роторе полная мощность обмотки управ

Механические характеристики
  В реальном исполнительном двигателе с амплитудно-фазовым управлением регулируется напряжение управления

Сравнение исполнительных двигателей при различных методах управления
  Проведенный анализ позволяет сделать следующие выводы: а) линейность механических и регулировочных характеристик выше всего при фазовом управлении. Амплитудно-фазовое управ

Машины постоянного тока
  4.1. Устройство, принцип действия и электромагнитный момент машины постоянного тока   Устройство машины постоянного тока подобно обращенной синхронно

Получение кругового вращающегося магнитного поля . . . . . . . . . . . . . 28
2.2. Основные принципы выполнения многофазных обмоток. . . . . . . . .

Методах управления. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.Синхронные электрические машины.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 3.1. Общие сведения. . . . . . . . . .. . . .. . . . . . . . . . . . . . .

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги