рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Магнитная цепь с переменной магнитодвижущей силой (МДС)

Магнитная цепь с переменной магнитодвижущей силой (МДС) - раздел Физика, Магнитные цепи с постоянной магнитодвижущей силой   На Рис. 1.7А Показана Схема Подключения Катушки С Ферромагнит...

 

На рис. 1.7а показана схема подключения катушки с ферромагнитным сердечником к источнику синусоидального напряжения.

Из закона Ома для магнитной цепи (1.7) () видно, что зависимость Ф=f(I) для катушки с ферромагнитным сердечником является нелинейной и ee характер определяется зависимостью B=f(H) (рис.1.7б). Так как L=w, то характер зависимости L=f(I) можно получить, построив зависимость (рис.1.7б).

 

 

а)

 

 

б)

 

Рис.1.7. Катушка с ферромагнитным сердечником, схема замещения ее магнитной цепи (а), зависимость магнитного потока и индуктивности катушки от тока (б).

 

Рассмотрим электромагнитные процессы в цепи катушки с ферромагнитным сердечником при подключении ее к синусоидальному напряжению (рис.1.8).

 

Рис.1.8. Схема замещения электрической цепи катушки с ферромагнитным сердечником.

 

На основании второго закона Кирхгофа имеем:

Активное падение напряжения ir относительно мало и для анализа общего характера процесса им можно пренебречь:

,

отсюда

Ф= -

Здесь A – постоянная величина магнитного потока, которая при питании синусоидальным напряжением (в установившемся режиме) равна нулю. Поэтому

, (1.12)

где

.

Будем считать, что начальная фаза потока равна 0, т.е.. Тогда , т.е. ЭДС отстает от индуцирующего ее потока на .

, где ;

;

. (1.13)

 

- уравнение трансформаторной ЭДС.

Связь между магнитным потоком и возбуждающим его током отображается петлей гистерезиса.

 

 

 

 

Рис.1.9. Построение кривой тока катушки с ферромагнитным сердечником.

 

Используя синусоидальную кривую потока и частный цикл гистерезиса, построим зависимость i(t) (рис.1.9). Анализ этой кривой показывает, что гистерезисная петля приводит к появлению угла сдвига фаз между потоком и вызывающим его током. Насыщение сердечника приводит к появлению пика в кривой тока. Чем больше величина магнитной индукции в сердечнике, тем больше и острее этот пик, что говорит о несинусоидальности кривой тока.

Заменим несинусоидальный ток эквивалентным синусоидальным. Условием эквивалентности является равенство действующих значений этих токов и равенство потерь, которые они вызывают. Эта замена позволит использовать методы расчетов цепей синусоидального тока и построить векторную диаграмму для катушки с ферромагнитным сердечником. Так как между несинусоидальным током и потоком существует сдвиг фаз, то и эквивалентный синусоидальный ток опережает поток на угол , называемый углом магнитного запаздывания (рис.1.10).

 

 

Рис.1.10. Векторные диаграммы магнитного потока, ЭДС и тока катушки с ферромагнитным сердечником.

 

Величина угла определяется потерями в ферромагнитном проводнике от действия гистерезиса и вихревых токов.

Рассмотрим распределение магнитного потока в ферромагнитном сердечнике катушки (рис.1.11).

 

 

 

Рис.1.11. К определению магнитного потока рассеяния в катушке с ферромагнитным сердечником

 

Хотя магнитная проницаемость сердечника в несколько тысяч раз больше магнитной проницаемости воздуха, часть магнитного потока катушки замыкается не по сердечнику, а по воздуху. Эта часть потока носит название потока рассеивания Фр (рис. 1.11). Таким образом, полный поток, сцепленный с витками катушки равен

. (1.14)

На основании закона Ома для магнитной цепи (1.7) можно написать выражение для потока рассеяния:

. (1.15)

Так как , то .

То есть поток рассеяния , в отличие от потока в сердечнике, совпадает по фазе с током и связан с ним линейной зависимостью. Следовательно, на векторной диаграмме вектор потока будет совпадать с вектором тока (рис.1.12).

 

Рис.1.12. Векторная диаграмма магнитных потоков, ЭДС и токов катушки с ферромагнитным сердечником.

 

Будем считать, что все витки обмотки катушки с ферромагнитным сердечником сцеплены с Фр, тогда

;

Lр=;

;

;

; m==;

;

Величина называется индуктивным сопротивлением рассеяния. В уравнении, составленном на основании 2-го закона Кирхгофа для электрической цепи катушки с ферромагнитным сердечником, к разностидобавится :

U=-e+ri-eр= -e+ri+Lр.

В комплексной форме

р; (1.16)

, (1.17)

где

Z= r+jxр; xр=.

 

На рис.1.13 построена векторная диаграмма катушки с ферромагнитным сердечником.

 

Рис.1.13 Полная векторная диаграмма катушки с ферромагнитным сердечником.

 

Разложим вектор тока катушки на две составляющие:

; .

 

Используя векторную диаграмму, получим эквивалентную схему замещения катушки с ферромагнитным сердечником (рис.1.14).

Рис.1.14. Схема замещения катушки с ферромагнитным сердечником.

 

Из уравнения трансформаторной ЭДС (1.13) определяем число витков катушки:

w=; (выбирается в пределах .)

Ток намагничивания определяется по формуле:

Iф=. (1.18)

Ток потерь в сердечнике:

In. (1.19)

Полный намагничивающий ток катушки:

I=. (1.20)

 

Приведем выражения, позволяющие рассчитать потери в сердечнике от гистерезиса и от вихревых токов. Потери в сердечнике от гистерезиса пропорциональны площади петли гистерезиса. Следует иметь ввиду, что ширина петли гистерезиса растет с увеличением частоты.

, (1.21)

где

- коэффициент потерь на гистерезис, зависящий от материала сердечника;

f – частота;

G – вес сердечника;

n=1,6 при Bm<1Тл и n=2 при Bm>1Тл.

Под действием переменного магнитного потока в сердечнике возникают вихревые токи (рис. 1.15).

 

 

 

 

Рис.1.15. К эффекту возникновения вихревых токов в ферромагнитном сердечнике.

 

Пусть вектор магнитного потока направлен, как показано на рис.1.15. Тогда в сердечнике, в плоскости перпендикулярной потоку возникнет ЭДС, под действием которой возникнут вихревые токи. Направление ЭДС таково, что создаваемый ими поток уменьшает вызвавший ЭДС поток . Для уменьшения потерь от вихревых токов сердечники (до частоты 20 кГц) собираются из листов ферромагнитного материала, изолированных друг от друга лаком. Другой способ уменьшения потерь от вихревых токов – увеличение сопротивления самого ферромагнитного материала за счет добавления нескольких процентов кремния, что оказывает незначительное влияние на его магнитные характеристики. При частотах до 50 МГц применяются сердечники из магнитодиэлектриков - прессмасс, состоящих из зерен ферромагнитного вещества, разделенных диэлектриком.

Потери на вихревые токи

; (1.22)

где

- коэффициент потерь от действия вихревых токов;

- коэффициент, учитывающий изоляцию листов.

 

 

1.5. Трансформаторы

 

Трансформатором называется статический электромагнитный аппарат, передающий энергию из одной цепи в другую посредством электромагнитной индукции. Он применяется для различных целей, но чаще всего служит для преобразования напряжения и тока.

Трансформаторы бывают: силовые, измерительные, специального назначения. Кроме того, трансформаторы различаются по числу фаз на однофазные и трехфазные; по способу охлаждения на сухие и жидкостные.

Условные обозначения трансформаторов (рис 1.16):

 
 
 


– Конец работы –

Эта тема принадлежит разделу:

Магнитные цепи с постоянной магнитодвижущей силой

На сайте allrefs.net читайте: "Магнитные цепи с постоянной магнитодвижущей силой"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Магнитная цепь с переменной магнитодвижущей силой (МДС)

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Расчет магнитной цепи постоянного магнита
  Постоянные магниты широко применяются в измерительных приборах, реле, генераторах и т. д.

Механические усилия в магнитном поле
  На проводник с током I, помещенный в магнитное поле индукции B, воздействует сила, направление которой определяется правилом левой руки (если вектор

Основные соотношения для однофазного трансформатора
Трансформатор состоит из двух или более обмоток, расположенных

Холостой ход трансформатора
  При холостом ходе трансформатора имеем (1.26)

Режим нагрузки трансформатора
Поток в магнитопроводе в режиме холостого хода трансформатора . При подк

Режим короткого замыкания трансформатора
  Режимом короткого замыкания называется режим, при котором вторичная обмотка замкнута накоротко. Если при опыте холостого хода определяются потери в сердечнике трансформатора, то при

Особенности работы трехфазных трансформаторов
  Все соотношения, которые мы получили для однофазных трансформаторов, справедливы и для трехфазных трансформаторов, точнее для одной фазы трансформатора, нагруженного симметрично.

Измерительные трансформаторы
  Измерительные трансформаторы применяются для изоляции измерительных приборов от высокого напряжения и расширения пределов измерения вольтметров и амперметров (рис.1.32). &n

Получение кругового вращающегося магнитного поля
  Круговым вращающимся магнитным полем называется поле, вектор результирующей магнитной индукции которого неизменен и вращается с постоянной угловой скоростью. Рассмотрим, как изменяе

Асинхронная электрическая машина
  Самым распространенным двигателем в промышленности является асинхронный двигатель. На рис.2.10 показаны конструкция и схема включения статорных и роторных обмоток трехфазного асинхр

Регулирование скорости вращения асинхронных двигателей
  Скорость вращения асинхронного двигателя определяется зависимостью

Создание вращающегося магнитного поля
  Индукция в воздушном зазоре электрической машины переменного тока определяется распределением НС вдоль окружности статора. Если пренебречь магнитным сопротивлением ферромагни

Пульсирующее поле
  б) а) П

Круговое вращающееся магнитное поле
  Если на статоре электрической машины разместить трехфазную обмотку, у которой оси фаз (A-X, B-Y, C-Z) сдвинуты в пространстве на

Эллиптическое поле
  Круговое вращающееся магнитное поле возникает только при симметрии токов, проходящих по катушкам (симметрии НС катушек отдельных фаз), при симметричном расположении этих кату

Требования, предъявляемые к исполнительным двигателям
  Помимо общих требований (предъявляемых ко всем машинам: малые габариты и вес, дешевизна, высокий КПД, надежность и т.д.), к исполнительным двигателям предъявляются и специфические т

Уравнения токов идеализированного двигателя
  Воспользуемся упрощенными схемами замещения ротора, в которых пренебрегается индуктивными сопротивлениями рассеяния ротора (рис. 2.26а, б):  

Механические характеристики
  Электромагнитные мощности для полей прямой и обратной последовательностей:    

Регулировочные характеристики
  Эти характеристики показывают, как изменяется скорость исполнительного двигателя при изменении коэффициента сигнала, если момент (нагрузка) на валу двигателя остается неизменным. Ур

Мощности управления и возбуждения
  Ток идеализированного двигателя является чисто активным, поэтому мощности обмоток управления и возбуждения будут определяться следующим образом:

Механическая мощность
  Механическая мощность двигателя в относительных единицах

Исполнительный двигатель с фазовым управлением
  Напряжения прямой и обратной последовательностей (как было показано выше):

Механические и регулировочные характеристики идеализированного двигателя
  Электромагнитная мощность с учетом выражения для и

Мощность управления
  Фазовое управление применяется сравнительно редко из-за большой мощности управления при малом коэффициенте сигнала. Так при неподвижном роторе полная мощность обмотки управ

Механические характеристики
  В реальном исполнительном двигателе с амплитудно-фазовым управлением регулируется напряжение управления

Сравнение исполнительных двигателей при различных методах управления
  Проведенный анализ позволяет сделать следующие выводы: а) линейность механических и регулировочных характеристик выше всего при фазовом управлении. Амплитудно-фазовое управ

Машины постоянного тока
  4.1. Устройство, принцип действия и электромагнитный момент машины постоянного тока   Устройство машины постоянного тока подобно обращенной синхронно

Получение кругового вращающегося магнитного поля . . . . . . . . . . . . . 28
2.2. Основные принципы выполнения многофазных обмоток. . . . . . . . .

Методах управления. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.Синхронные электрические машины.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 3.1. Общие сведения. . . . . . . . . .. . . .. . . . . . . . . . . . . . .

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги