рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Взаимодействие рентгеновского излучения с веществом. Эффект Комптона.

Взаимодействие рентгеновского излучения с веществом. Эффект Комптона. - раздел Физика, Квантовая природа электромагнитного излучения. Формула Эйнштейна Взаимодействие Ренгеновского Излучения С Веществом. При Прохождении ...

Взаимодействие ренгеновского излучения с веществом.

При прохождении рентгеновских лучей через какое-нибудь твердое, жидкое или газообразное вещество они взаимодействуют с электронами, ;i при очень большой жесткости и ядрами атомов элементов, входящих в состав вещества и при этом теряют часть своей энергии вследствие:

 

1) истинного поглощения, т.е. превращения их энергии в другие виды энергии;

 

2) рассеяния, т.е. изменения направления распространения лучей без изменения длины и с изменением длины волны.

 

Первичными элементарными процессами истинного поглощения рентгеновского излучения, т.е. преобразования их энергии в кинетическую энергию электронов являются:

 

а) фотоэлектрический эффект — вырывание электронов из атомов поглощающего вещества и сообщение им кинетической энергии (фотоэлектрическое поглощение);

 

б) комптон-эффект — когерентное и некогерентное рассеяние, т.е. с изменением длины волны и передачей части энергии рассеивающему электрону;

 

в) образование элементарных пар зарядов — электрона и позитрона — и сообщение им кинетической энергии. Эти виды взаимодействия показаны на схеме.

 

Суммарная кинетическая энергия может распределяться между электроном и позитроном различным образом: одинаково или со всеми возможными значениями энергии с выполнением законов сохранения заряда и количества движения. Так как заряды позитрона и электрона равны по величине, но противоположны по знаку, то суммарный заряд равен нулю.

 

В отличие от фотоэффекта и комптон-эффекта, вероятность которых сильно уменьшается с увеличением энергии фотонов, эффект образования пар происходит тем чаще, чем выше энергия фотонов.

 

Относительная роль этих трех процессов взаимодействия рентгеновских лучей с веществом зависит от энергии квантов (фотонов) и атомного номера атома поглощающего вещества. Для данного вещества каждый вид взаимодействия фотона с веществом преобладает в определенном интервале энергий. Для фотонов малых энергий (мягких рентгеновских лучей) основную роль при поглощении играет фотоэффект. При лучах средней жесткости наряду с фотоэффектом все большее значение приобретает комптон-эффект, который начинает играть преобладающую роль при жестки лучах. Наконец, при очень жестких лучах наибольшее значение имеет эффект образования пар.

 

Так как фотоэффект и комптон-эффект уменьшаются, а эффект образования пар увеличивается с возрастанием энергии фотонов, то полный суммарный коэффициент поглощения сначала уменьшается, а затем снова возрастает с увеличением жесткости излучения. Энергия фотонов, при которой полный коэффициент поглощения достигает минимума, зависит от атомного номера поглощающего вещества. Например, минимум коэффициента поглощения в свинце соответствует фотонам с энергией около 3 МГЭВ, для алюминия около 20 мгэМ.

 

Если вещество имеет сложный состав, то величины г и Я определяются для каждого компонента отдельно.

 

Кроме первичных процессов взаимодействия рентгеновских лучей с веществом (возникновение фотоэлектронов и характеристического излучения при поглощении и электронов отдачи и рассеянного излучения — при рассеянии) происходят вторичные взаимодействия возникших электронов с поглощающим веществом. Вторичные электроны, освобожденные первичными фотоэлектронами и электронами отдачи, имеют небольшие скорости, быстро затормаживаются и могут вызывать медленные третичные электроны, которые поглощаются атомами вещества и их кинетическая энергия переходит в тепловую. Полная цепь превращений энергии, происходящих при взаимодействии рентгеновского излучения с веществом, представлена на рис. 4.11.

 

Наибольшая толщина слоя вещества, которую преодолевают наиболее быстрые фотоэлектроны, называется «предельной толщиной», зависящей от начальной скорости первичных фотоэлектронов и обратно пропорциональна плотности поглощающего вещества.

 

При взаимодействии рентгеновского излучения с веществом возможно возникновение эффекта Оже, при котором возбужденный атом расходует энергию на вылет собственного электрона. Электроны Оже — это, такие электроны, которые при взаимодействии с, атомами вещества создают вторичные электроны и вторичное рентгеновское излучение. Такие процессы размена энергии фотонов и электронов происходят до тех пор, пока их энергия не станет меньше энергии связи электронов в атоме.

 

Рентгеновское излучение, так же как и другие виды пони шрующего излучения, обладав! биологическим действием, 1>п<>логические процессы, происходящие в молекулах, клетках и организме в целом под действием рентгеновского излучения, обусловлены ионизацией и возбуждением атомов и молекул, становящихся химически активными и вызывающих физико-химические изменения в клетках и межклеточном веществе. Применение источников рентгеновского излучения требует соблюдения радиационной защиты от поражения ионизирующим излучением.

Эффект Комптона.

ЭффектКомптона — рассеяние электромагнитного излучения на свободном электроне, сопровождающееся уменьшением частоты излучения (открыт А. Комптоном в 1923 г.). В этом процессе электромагнитное излучение ведёт себя как поток отдельных частиц – корпускул (которыми в данном случае являются кванты электромагнитного поля - фотоны), что доказывает двойственную – корпускулярно-волновую – природу электромагнитного излучения. С точки зрения классической электродинамики рассеяние излучения с изменением частоты невозможно.

Комптоновское рассеяние – это рассеяние на свободном электроне отдельного фотона с энергией Е = h = hc/ (h – постоянная Планка, – частота электромагнитной волны, – её длина, с – скорость света) и импульсом р = Е/с. Рассеиваясь на покоящемся электроне, фотон передаёт ему часть своей энергии и импульса и меняет направление своего движения. Электрон в результате рассеяния начинает двигаться. Фотон после рассеяния будет иметь энергию Е' = h' (и частоту) меньшую, чем его энергия (и частота) до рассеяния. Соответственно после рассеяния длина волны фотона ' увеличится. Из законов сохранения энергии и импульса следует, что длина волны фотона после рассеяния увеличится на величину

Где - угол рассеяния фотона, а me - масса электрона.

 

– Конец работы –

Эта тема принадлежит разделу:

Квантовая природа электромагнитного излучения. Формула Эйнштейна

Принцип неопределенности Гейзенберга произведение неопределенностей значений двух сопряженных переменных не может быть по порядку величины меньше... Энергия и время являются каноническими сопряженными величинами Поэтому для...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Взаимодействие рентгеновского излучения с веществом. Эффект Комптона.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Квантовая природа электромагнитного излучения. Формула Эйнштейна.
  Планку удалось найти вид функции в точности соответствующий опытным данным. Величина пропорционал

Количественная теория Резерфорда рассеяния альфа-частиц. Планетарная модель атома.
Планетарная модель атома. Из опытов Резерфорда непосредственно вытекает планетарная модель ато

Постулаты Бора. Теория Бора для водородоподобных систем. Модель атома Бора и энергетические состояния.
  Постулаты бора: - Электрон в атоме, не теряя энергии, двигается по определённым дискретным круговым орбитам для которых момент импульса квантуется:

Спектр атома водорода.
При изучении излучения ученым удалось установить общие закономерности в характере спектров и найти ряд эмпирических законов, которым они подчиняются. Было установлено, что спектральные линии всех э

Гипотеза де Бройля. Закон дисперсии волн де Бройля.
В 1924 г. Де Бройль выдвинул смелую гипотезу, что дуализм не является особенностью одних только оптических явлений, но имеет универсальное значение. «В оптике, - писал он, - в течение столетия слиш

Уравнение Шредингера.
-

Квантование энергии. Частица в потенциальной яме.
(n=1,2,3,…) n – главное квантовое число, номер орбиты. m – магнитное квантовое число.

Прохождение частицы через потенциальный барьер. Туннельный эффект.
Основное: Для потенциального барьера прямоугольной формы высоты U и ширины l можно записать

Квантование момента импульса и его проекции. Квантовое число.
Применительно к моменту импульса в квантовой механике вводят 4 оператора: оператор квадрата момента и три операто

Квантование водородоподобного атома в сферически-симметричном поле.
Рассмотрим систему, состоящую из неподвижного ядра с зарядом Ze и движущегося вокруг него электрона. При Z=1 это атом водорода, при Z> 1 это водородоподобный атом. Потенциальная энергия электрон

Принцип Паули. Периодическая система химических элементов Д.И.Менделеева.
Принцип Паули: в одном и том же атоме (или в какой-либо другой квантовой системе) не может быть двух электронов (либо других частиц с полуцелым спином), обладающих одинаковой совокупностью квант

Периодическая система элементов Д. И. Менделеева
В 1869 г. Менделеев открыл периодический закон изменения химических и физических свойств элементов. Он ввел понятие о порядковом номере элемента и получил полную периодичность в изменении химически

Энергетические уровни и спектральные линии щелочных металлов.
Спектры испускания атомов щелочных металлов, подобно спектру водорода, состоят из нескольких серий линий. Наиболее интенсивные из них получили названия: главная, резкая, диффузная и основная (или с

Спин электрона. Спин-орбитальное взаимодействие.
Спин-орбитальное взаимодействие — в квантовой физике взаимодействие между движущейся частицей и её собственным магнитным моментом, известным как спин. Наиболее часто встречающимся примером такого в

Тонкая структура спектральных линий.
От тонкой структуры термов следует отличать тонкую структуру спектральных линий, т.е. расщепление спектральных линий на несколько близко расположенных компонент. Это расщепление определяется разреш

Магнитный момент атома. Эффект Зеемана.
С механическим моментом атома M связан магнитный момент μ. Отношение μ/M называется гиромагнитным отношением. Момент, обусловленный движением электронов в атоме, называют орбитальным. Опр

Полный механический момент многоэлектронного атома.
Каждый электрон в атоме обладает орбитальным моментом импульса M и собственным моментом MS. Механические моменты связанны с соответствующими магнитными моментами, вследствие чего между в

Правило отбора при излучении и поглощении света.
Правило отбора отражает закон сохранения момента количества движений. Если рассматривать однофотонный процесс, то

Энергия молекулы. Молекулярные спектры.
Рассмотрим двухатомные молекулы. Различают два вида связи в них: 1) Если электрон в молекуле можно разделить на две группы, каждая из которых всё время находится около одного из ядер, т. е

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги