рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Число степеней свободы. Внутренняя энергия идеального газа

Число степеней свободы. Внутренняя энергия идеального газа - раздел Физика, КРАТКИЙ КУРС ФИЗИКИ Часть 1 Числом Степеней Свободы Называется Число Независимых Координат, Которыми О...

Числом степеней свободы называется число независимых координат, которыми описывается движение тела в пространстве. Материальная точка имеет три степени свободы, поскольку при её движении в пространстве изменяются три координаты x, y и z.

Рис. 21.1

Система из двух материальных точек, расстояние между которыми остаётся постоянным, имеет пять степеней свободы: три из них приходятся на поступательное движение и две — на вращательное вокруг осей x и z (рис. 21.1). Вращение вокруг оси y не даёт дополнительной степени свободы, так при этом положение материальных точек в пространстве не изменяется.

Средняя кинетическая энергия поступательного движения молекулы равна 3/2 kТ — формула (15.11). Это движение можно рассматривать как движение с тремя степенями свободы, поскольку молекулы идеального газа можно принять за материальные точки. Все три степени свободы равноправны, поэтому можно считать, что на одну степень свободы приходится энергия

 

. (21.1)

 

В статистической физике доказывается, что на любую степень свободы движения молекулы (поступательную, вращательную и т.д.) приходится одна и та же энергия, равная 1/2 kТ. Это утверждение носит название закона равнораспределения энергии по степеням свободы.

В общем случае, когда молекула имеет i степеней свободы, её кинетическая энергия

 

. (21.2)

Подсчитаем теперь внутреннюю энергию одного киломоля идеального газа. Эта энергия может быть найдена умножением средней энергии одной молекулы на их число, т.е. число Авогадро:

 

.

 

Поскольку kNA=R, где R универсальная газовая постоянная, то

 

. (21.3)

 

Из (21.З) видно, что внутренняя энергия идеального газа полностью определяется его температурой.

 

22. Классическая теория теплоёмкости газов

Различают молярную теплоёмкость С (количество теплоты, которое необходимо сообщить одному молю вещества, чтобы повысить его температуру на 1 К) и удельную теплоёмкость (рассчитывается на единицу массы). Между молярной С и удельной С0 теплоёмкостью существует связь C=mC0, где m — молярная масса.

Для газа существенно, каким образом происходит его нагревание, поэтому различают:

1) теплоёмкость при изотермическом процессе ;

2) теплоёмкость при изохорном процессе ;

3) теплоёмкость при изобарном процессе .

При изотермическом процессе температура не меняется, поэтому .

При изохорном процессе dQ=dU, так как работа в таком процессе не совершается, поэтому

(22.1)

и, следовательно,

dU=CVdT. (22.2)

 

Теплоёмкость при постоянном давлении

 

. (22.3)

 

Представим с помощью уравнения Менделеева-Клапейрона элементарную работу, совершаемую одним молем идеального газа при изобарном процессе в виде

dA=PdV=RdT. (22.4)

 

Подставив (22.4) в (22.3), получим формулу Майера

 

CP = CV+R, (22.5)

 

т.е. CP >CV на величину универсальной газовой постоянной.

Выразим теперь молярные теплоёмкостиCVи CP через число степеней свободы. С учётом(2I.3), из (22.3) следует

 

. (22.6)

 

ЗнаяCV, из формулы Майера находим

 

. (22.7)

 

Отношение

 

(22.8)

 

называется коэффициентом Пуассона. Этот коэффициент с помощью (22.6) и (22.7) можно выразить через число степеней свободы

 

. (22.9)

 

Для одноатомного газа(i=3)g = 1,67; для двухатомного (i=5) g= 1.40; для многоатомного(i=6)g= 1,33.

– Конец работы –

Эта тема принадлежит разделу:

КРАТКИЙ КУРС ФИЗИКИ Часть 1

Министерство образования и науки Украины... Одесская национальная морская академия...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Число степеней свободы. Внутренняя энергия идеального газа

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные единицы СИ
В настоящее время общепринятой является Международная система единиц — СИ. Эта система содержит семь основных единиц: метр, килограмм, секунда, моль, ампер, кельвин, кандела и две дополнительные —

I. МЕХАНИКА
Механика — наука о механическом движении материальных тел и происходящих при этом взаимодействиях между ними. Под механическим движением понимают изменение с течением времени взаимного пол

Нормальное и касательное ускорения
Рис. 1.4 Движение материальной точки по криволинейной траект

Законы Ньютона
Динамика — раздел механики, в котором изучается движение материальных тел под воздействием приложенных к ним сил. В основе механики лежат законы Ньютона. Первый закон Ньютона

Закон сохранения импульса
Рассмотрим вывод закона сохранения импульса на основе второго и третьего законов Ньютона.

Связь между работой и изменением кинетической энергии
Рис. 3.3 Пусть тело массой т движется вдоль оси х под

Связь между работой и изменением потенциальной энергии
Рис. 3.4 Эту связь мы установим на примере работы силы тяжес

Закон сохранения механической энергии
Рассмотрим замкнутую консервативную систему тел. Это означает, что на тела системы не действуют внешние силы, а внутренние силы по своей природе являются консервативными. Полной механическ

Соударения
Рассмотрим важный случай взаимодействия твёрдых тел — соударения. Соударением (ударом) называется явление конечного изменения скоростей твёрдых тел за весьма малые промежутки времени при их непо

Основной закон динамики вращательного движения
Рис. 4.3 Для вывода этого закона рассмотрим простейший случа

Закон сохранения момента импульса
Рассмотрим изолированное тело, т.е. такое тело на которое не действует внешний момент сил. Тогда Mdt = 0 и из (4.5) следует d(Iw)=0, т.е. Iw=const. Если изолированная система состоит

Гироскоп
Гироскопом называется симметричное твёрдое тело, вращающееся вокруг оси, совпадающей с осью симметрии тела, проходящей через центр масс, и соответствующей наибольшему собственному моменту инерции.

Общая характеристика колебательных процессов. Гармонические колебания
Колебаниями называются движения или процессы, обладающие той или иной степенью повторяемости во времени. В технике устройства, использующие колебательные процессы могут выполнять оп

Колебания пружинного маятника
Рис. 6.1 Укрепим на конце пружины тело массой m, которое мож

Энергия гармонического колебания
Рассмотрим теперь на примере пружинного маятника процессы изменения энергии в гармоническом колебании. Очевидно, что полная энергия пружинного маятника W=Wk+Wp, где кинетическая

Сложение гармонических колебаний одинакового направления
Решение ряда вопросов, в частности, сложение нескольких колебаний одинакового направления, значительно облегчается, если изображать колебания графически, в виде векторов на плоскости. Полученная та

Затухающие колебания
В реальных условиях в системах, совершающих колебания, всегда присутствуют силы сопротивления. В результате система постепенно расходует свою энергию на выполнение работы против сил сопротивления и

Вынужденные колебания
В реальных условиях колеблющаяся система постепенно теряет энергию на преодоление сил трения, поэтому колебания являются затухающими. Чтобы колебания были незатухающими, необходимо каким-то образом

Упругие (механические) волны
Процесс распространения возмущений в веществе или поле, сопровождающийся переносом энергии, называется волной. Упругие волны — процесс распространения в упругой среде механически

Интерференция волн
Интерференцией называется явление наложения волн от двух когерентных источников, в результате которого происходит перераспределение интенсивности волн в пространстве, т.е. возникают интерференци

Стоячие волны
Частным случаем интерференции является образование стоячих волн. Стоячие волны возникают при интерференции двух встречных когерентных волн с одинаковой амплитудой. Такая ситуация может возни

Эффект Допплера в акустике
Звуковыми волнами называют упругие волны с частотами от 16 до 20000 Гц, воспринимаемые органами слуха человека. Звуковые волны в жидких и газообразных средах являются продольными. В твёрды

Основное уравнение молекулярно-кинетической теории газов
Рассмотрим в качестве простейшей физической модели идеальный газ. Идеальным называется такой газ, для которого выполняются следующие условия: 1) размеры молекул настолько малы, ч

Распределение молекул по скоростям
Рис.16.1 Предположим, чтонам удалось измерить скорости всех

Барометрическая формула
Рассмотрим поведение идеального газа в поле силы тяжести. Как известно, по мере подъёма от поверхности Земли давление атмосферы уменьшается. Найдём зависимость давления атмосферы от высоты

Распределение Больцмана
Выразим давление газа на высотах h иh0 через соответствующее число молекул в единице объёмап ип0, считая, что на разных высотахT=const:   P =

Первое начало термодинамики и его применение к изопроцессам
Первое начало термодинамики — это обобщение закона сохранения энергии с учётом тепловых процессов. Его формулировка: количество теплоты, сообщённое системе, расходуется на выполнение работы

Адиабатный процесс
Адиабатным называется процесс, происходящий без теплообмена с окружающей средой. В адиабатном процессеdQ = 0, поэтому первое начало термодинамики применительно к этому процессу прин

Обратимые и необратимые процессы. Круговые процессы (циклы). Принцип действия тепловой машины
Обратимыми называются такие процессы, которые удовлетворяют следующим условиям. 1. После прохождения этих процессов и возвращения термодинамической системы в исходное состояние в

Идеальная тепловая машина Карно
Рис. 25.1 В 1827 г. французский военный инженер С. Карно, ре

Второе начало термодинамики
Первое начало термодинамики, которое является обобщением закона сохранения энергии с учётом тепловых процессов, не указывает на направленность протекания различных процессов в природе. Так, первое

Невозможен процесс, единственным результатом которого была бы передача теплоты от холодного тела к горячему.
В холодильной машине теплота передаётся от холодного тела (морозильной камеры) в более нагретую окружающую среду. Казалось бы, что это противоречит второму началу термодинамики. На самом деле проти

Энтропия
Введём теперь новый параметр состояния термодинамической системы — энтропию, которая принципиально отличается от других параметров состояния направленностью своего изменения. Элементарное измене

Дискретность электрического заряда. Закон сохранения электрического заряда
Источником электростатического поля служит электрический заряд — внутренняя характеристика элементарной частицы, определяющая ее способность вступать в электромагнитные взаимодействия.

Энергия электростатического поля
Найдём вначале энергию заряженного плоского конденсатора. Очевидно, что эта энергия численно равна работе, которую нужно совершить, чтобы разрядить конденсатор.

Основные характеристики тока
Электрическим током называется упорядоченное (направленное) движение заряженных частиц. Сила тока численно равна заряду, прошедшему через поперечное сечение проводника за единицу

Закон Ома для однородного участка цепи
Однородным называется участок цепи, не содержащий источника ЭДС. Ом экспериментально установил, что сила тока на однородном участке цепи пропорциональна напряжению и обратно пропорц

Закон Джоуля - Ленца
Джоуль и независимо от него Ленц экспериментально установили, что количество теплоты, выделенной в проводнике с сопротивлением R за время dt, пропорционально квадрату силы тока, сопротивлен

Правила Кирхгофа
Рис. 39.1 Для расчёта сложных цепей постоянного тока применя

Контактная разность потенциалов
Если два разнородных металлических проводника привести в контакт, то электроны получают возможность переходить из одного проводника в другой и обратно. Равновесное состояние такой системы

Эффект Зеебека
Рис. 41.1 В замкнутой цепи из двух разнородных металлов на г

Эффект Пельтье
Второе термоэлектрическое явление — эффект Пельтъе состоит в том, что при пропускании электрического тока через контакт двух разнородных проводников в нём происходит выделение или поглощени

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги