рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Тема 10. Механика жидкости. Уравнение Бернулли

Тема 10. Механика жидкости. Уравнение Бернулли - раздел Физика, Учебно-методическое пособие КОНСПЕКТ ЛЕКЦИЙ по физике Учебно-методическое пособие Гидростатика. Для Несжимаемой Жидкости Ее Плотность Не Завис...

Гидростатика. Для несжимаемой жидкости ее плотность не зависит от давления. При поперечном сечении S столба жидкости плотностью r и высотой h давление жидкости р на нижнее основание:

.

Давление называетсягидростатическим давлением.

Гидродинамика. Графически движение жидкостей изображается с помощью линий тока, которые проводятся так, что касательные к ним совпадают по направлению с вектором скорости жидкости в соответствующих точках пространства (рис. 9). Линии тока проводятся таким образом, чтобы их густота характеризовала величину скорости: густота больше там, где больше скорость течения жидкости, и меньше там, где жидкость течет медленнее.

Часть жидкости, ограниченную линиями тока, называют трубкой тока (рис. 10). Течение жидкости называется установившимся (или стационарным), если форма и расположение линий тока, а также значения скоростей в каждой ее точке со временем не изменяются.

Рис. 9 Рис. 10

Уравнение неразрывности струи для несжимаемой жидкости.Рассмотрим какую-либо трубку тока. Выберем два ее сечения S1 и S2 , перпен­дикулярные направлению скорости (рис. 10).

За время Dt через сечение S1 проходит объем жидкости , где – скорость течения жидкости в месте сечения S1 , а через сечение S2 за тоже время Dt пройдет объем жидкости , где – скорость течения жидкости в месте сечения S2 . Если жидкость несжимаемая, то через сечение S2 пройдет такой же объем жидкости, как и через сечение S1 , т. е.

.

Так как положения сечений S1 и S2 выбраны произвольно, то отсюда следует, что вдоль данной трубки тока . Это соотношение называетсяуравнением неразрывностиструи для несжимаемой жидкости.

Уравнение Бернулли. Бернулли рассмотрел изменения гидродинамических параметров вдоль произвольно выбранной трубки тока стационарно текущей жидкости плотностью r (рис. 11).

Рис. 11

В месте сечения трубки тока S1 скорость течения жидкости , давление p1 и высота, на которой это сечение расположено относительно выбранного уровня отсчета, h1. Аналогично, в месте сечения трубки тока S2 скорость течения жидкости , давление p2 и высота расположения этого сечения над тем же уровнем отсчета h2 .

Бернулли установил, что для любых двух сечений одной трубки тока несжимаемой жидкости выполняется равенство:

.

Так как положения сечений было выбрано произвольно, то для любой трубки тока несжимаемой жидкости гидродинамические параметры жидкости подчиняются следующему уравнению (уравнению Бернулли):

.

Для горизонтальной трубки тока (h = const) уравнение Бернулли принимает вид:

,

где величина называетсяполным давлением,

величина р называетсястатическим давлением,

величина называетсядинамическим давлением.

Из уравнения Бернулли для горизонтальной трубки тока и уравнения неразрывности струи следует, что при течении жидкости по горизонтальной трубе, имеющей различные сечения, скорость жидкости больше в местах сужения, а статическое давление, наоборот, в местах сужения меньше.

Формула Торричелли.Формула Торричелли позволяет находить скорость истечения жидкости через малое отверстие в стенке или дне сосуда (рис. 12). Формула Торричелли следует из уравнения Бернулли.Если применить это уравнение для двух сечений S1 и S2 (S1 на уровне h1 cвободной поверхности жидкости в сосуде и S2 на уровне отверстия h2), то получим равенство: Рис.12

.

Так как давления р1 и р2 жидкости на уровнях первого и второго сечений равны атмосферному, то р12 , а полученное соотношение примет вид:

.

Из уравнения неразрывности струи следует, что ,

где S1 и S2 площади поперечных сечений сосуда и отверстия.

Так как S1>>S2 , то и членом можно пренебречь.

Тогда ,

откуда .

Это выражение получило название формулы Торричелли, где h – высота свободной поверхности жидкости в сосуде над уровнем отверстия.

Формула Торричелли справедлива только для идеальнойжидкости, то есть для жидкости, в которой отсутствует вязкость или внутреннее трение. Только в этом случае скорость истечения жидкости из малого отверстия такая же по величине, как и скорость тела, свободно падающего с высоты h.

ЧАСТЬ II. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

– Конец работы –

Эта тема принадлежит разделу:

Учебно-методическое пособие КОНСПЕКТ ЛЕКЦИЙ по физике Учебно-методическое пособие

Федеральное государственное бюджетное образовательное учреждение... высшего профессионального образования... Ростовский государственный строительный университет...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Тема 10. Механика жидкости. Уравнение Бернулли

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Кинематика поступательного движения
Положение материальной точки А в декартовой системе координат в данный момент времени определяется тремя координатами x, y и z или радиусом-вектором

Кинематика вращательного движения
Пусть некоторая точка движется по окружности радиуса r. Изменение положения точки в пространстве за промежуток времени Dt определяется углом поворота

Тема 2. Динамика поступательного движения. Законы Ньютона
Первый закон Ньютона: существуют такие системы отсчета, в которых всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор,

Тема 3. Работа. Кинетическая, потенциальная и полная энергия
Работа. Если на тело, движущееся прямолинейно, действует постоянная сила , которая составляет некоторый уг

Тема 4. Момент инерции твердого тела. Теорема Штейнера
Моментом инерции материальной точкимассой m относительно некоторой оси вращения называется физическая величина I, равная произведению массы этой материальной точки на

Тема 5. Кинетическая энергия и работа вращательного движения Уравнение динамики вращательного движения твердого тела
При вращении твердого тела относительно неподвижной оси отдельные его точки, находящиеся на различном расстоянии от оси вращения, имеют различные скорости

Тема 6. Момент импульса. Закон сохранения момента импульса
Моментом импульса материальной точки,вращающейся относительно неподвижной оси OO′, называется величина L, равная произведению импульса

Тема 7. Механические колебания. Пружинный маятник
Механическими колебаниями называются движения, характеризующиеся определенной повторяемостью во времени. Колебания называютсясвободными (

Вынужденные гармонические колебания пружинного маятника
Незатухающие гармонические колебания в реальной колебательной системе можно получить с помощью внешней вынуждающей силы F(t), изменяющейся по гармоническому закону:

Тема 8. Гармонические колебания физического маятника
Физический маятник – это твердое тело, имеющее ось вращения и совершающее колебания под действием тангенциальной составляющей силы тяжести Ft (Ft =

Тема 9. Механические волны
Процесс распространения колебаний в сплошной среде называется волной. Упругими (или механическими) называются волны, распространяющиеся в упругой среде. Упругие во

Тема 1. Уравнение состояния идеального газа.
Состояние системы задаетсятермодинамическими параметрами – совокупностью физических величин, характеризующих свойства термодинамической системы, например, давлением р, объем

Тема 2. Термодинамические процессы. Изопроцессы.
Любое изменение в системе, связанное с изменением ее термодинамических параметров, называетсятермодинамическим процессом. Из уравнения Клапейрона – Менделеева следует, что

Идеального газа.
Основное уравнение молекулярно-кинетической теории идеального газа связывает термодинамические параметры газа с параметрами, характеризующими движение его молекул. Так, давление газа, как следствие

Тема 4. Распределение молекул идеального газа по скоростям.
В газе, находящемся в состоянии равновесия при определенной температуре, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям. Максвелл установил, чт

Тема 5. Барометрическая формула. Распределение Больцмана.
Барометрическая формула определяет зависимость атмосферного давления воздуха от высоты. Молекулы воздуха находятся, с одной стороны, в потенциальном поле сил тяготения Земли, а, с другой – , в сост

Тема 6. Явления переноса (диффузия, теплопроводность, вязкость).
В неравновесных системах возникают особые необратимые процессы, называемые явлениями переноса, в результате которых происходит пространственный перенос массы, энергии, импульса.

Тема 7. Первое начало термодинамики. Внутренняя энергия. Работа. Применение первого начала термодинамики к изопроцессам.
Внутренней энергией газа U называется сумма кинетической энергии хаотического (теплового) движения всех молекул газа и энергии взаимодействия молекул газа между собой. Для и

Работа газа при изопроцессах.
1. Изобарный процесс (p = const). При изобарном процессе работа газа при увеличении объема от V1 до V2 равна:

Тема 8. Теплоемкость газа при изопроцессах. Уравнение Майера.
Теплоемкостьютела называется величина, равная количеству теплоты, которое нужно сообщить телу, чтобы повысить его температуру на 1 К. Удельная теплоемкость

Тема 9. Адиабатический процесс.
Адиабатическим называется процесс, при котором отсутствует теплообмен между системой и окружающей средой. При адиабатическом процессе изменяются все термодинамические параметры (

Работа газа при адиабатическом процессе.
Из первого начала термодинамики () для адиабатического процесса () следует, что

Тема 10. Обратимый и необратимый процессы. Круговой процесс. Тепловая машина и цикл Карно.
Термодинамический процесс называется обратимым, если он может проходить как в прямом, так и в обратном направлении, причем если такой процесс проходит сначала в прямом, а затем в о

ЧАСТЬ III. ЭЛЕКТРИЧЕСТВО и МАГНЕТИЗМ
ЭЛЕКТРОСТАТИКА Тема 1. Теорема Остроградского-Гаусса для электростатического поля Электростатическое поле – это особый вид материи, с помощью которой происходит взаимодействие зар

Для стационарных электрического и магнитного полей
В случае стационарных (то есть неменяющихся во времени) электрического и магнитного полей, происхождение которых связано с покоящимися зарядами для электрического поля и со стационарными токами для

Тема 8. Уравнения Максвелла для электромагнитного поля
Согласно теории Максвелла для электромагнитного поля в случае нестационарных (то есть, изменяющихся во времени) электрического и магнитного полей, источниками электрического поля м

Уравнение свободных незатухающих гармонических колебаний.
Для возбуждения в контуре колебаний предварительно заряжают конденсатор, сообщая его обкладкам заряд ±q. Тогда в начальный момент времени t=0 (рис. 19, а) между обкладками конд

ЧАСТЬ IV. Волновая и квантовая оптика
  Тема 1. Волновая теория света. Интерференция света Инт

Условия интерференционного максимума и минимума
Если оптическая разность хода D равна целому числу длин волн l0 , т.е. (

Тема 3. Дифракция Фраунгофера
Фраунгофер рассмотрел дифракцию плоских световых волн,илидифракцию в параллельных лучах,которую можнонаблюдать в том случае, если источник света и точка наблюдения

Дифракция Фраунгофера на дифракционной решетке.
Одномерная дифракционная решетка – это система параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непроз­рачными промежутками.

Тема 6. Корпускулярная оптика
Соглас­но квантовой гипотезе Планка-Эйнштейна свет частотой n испускается, распространяется и поглощается веществом отдельными порциями (квантами), энергия которых e

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги