рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Тема 6. Корпускулярная оптика

Тема 6. Корпускулярная оптика - раздел Физика, Учебно-методическое пособие КОНСПЕКТ ЛЕКЦИЙ по физике Учебно-методическое пособие Соглас­Но Квантовой Гипотезе Планка-Эйнштейна Свет Частотой ...

Соглас­но квантовой гипотезе Планка-Эйнштейна свет частотой n испускается, распространяется и поглощается веществом отдельными порциями (квантами), энергия которых eо=hn (h – постоянная Планка). Эти локализованные в пространстве дискретные световые кванты, движущиеся со скоростью с рас­пространения света в вакууме, получили назва­ние фотонов. Таким образом, распространение света можно рассматривать не как непрерывный волновой процесс, а как поток частиц – фотонов. Доказательством этих квантовых (корпускулярных) представлений о свете, как о потоке частиц, являются фотоэффект и эффект Комптона.

Внешним фотоэффектом называется испускание электронов веществом под действием электромагнитного излучения. Явление внешнего фотоэффекта и его закономерности объяснены на основе квантовой теории фотоэффекта, согласно которой каждый квант света поглощается только одним электроном. Поэтому число вырванных фотоэлектронов пропорционально интенсивности света.

Энергия hn падающего на металл фотона расходуется на совершение электроном работы вы­хода А из металла и на сообщение вылетевшему фотоэлектрону кинетичес­кой энергии, то есть по закону сохранения энергии:

(уравнение Эйнштейна для внешнего фотоэффекта).

Из этого уравнения следует, что максимальная кинетическая энергия фотоэлектрона ли­нейно возрастает с увеличением частоты падающего излучения и не зависит от его интенсивности, то есть от числа фотонов. Так как с уменьшением частоты света кинетическая энергия фотоэлектронов уменьшается, то при некоторой частоте n=n0 кинетическая энергия фотоэлектронов станет равной нулю и в этом случае энергия фотона hn0 равна работе выхода А, из чего следует, что n0=А/h (частота n0 носит название красной границы фотоэффекта). При частоте n<n0 фотоэффекта не будет.

Масса и импульс фотона.Согласно квантовой гипотезе Планка-Эйнштейна, распространение света можно рассматривать как поток частиц – фотонов, энергия которых e0=hn . Тогда из уравнения Эйнштейна взаимосвязи массы и энергии E=mc2 следует, что масса фотона:

.

Поскольку фотон движется со скоро­стью света с, то импульс фотона р :

.

Следовательно, фотон, как и любая другая частица, характеризуется энергией, массой и импульсом. Полученные выражения связывают корпускулярные характеристики фотона – массу, импульс и энергию – с волновой характеристикой света – его частотой n (или длиной волны l).

Корпускулярные свойства света проявляются в эффекте Компто­на.

Эффектом Комптона называется увеличение длины волны коротковолнового электромаг­нитного излучения при его упругом рассеянии на свободных электронах вещества. Опыты Комптона показали, что разность длин волн рассеянного (l') и падающего (l) электромаг­нитного излучения, то есть величина Dl=l'–l не зависит от длины волны l падающего излучения и природы рассеивающего вещества (РВ), а определяется только углом рассея­ния q, то есть углом между направлениями лучей до и после рассеяния (рис. 11):

,

где комптоновская длина волны.

(При рассеянии фотона на электроне = 2,426 пм).

Эффект Комптона не укладывается в рамки волновой теории света, и его объяснение дано на основе квантовых (корпускулярных) представлений о природе света. Если считать, что излучение имеет кор­пускулярную природу, то есть представляет собой поток фотонов, то эффект Комп­тона – это результат упругого столкновения рентгеновских фотонов со свободными элек­тронами вещества. В процессе этого столкновения фотон переда­ет электрону часть своих энергии и импульса в соответствии с законами их сохранения, что ведет к уменьшению энергии (или увеличению длины волны) фотона при его соударении с электроном (эффект Комп­тона).

Исходя из законов сохранения импульса и энергии, для упругого столкновения двух частиц (рис. 11) – налетающего фотона, обладающего импульсом и энергией e = hn, с покоящимся свободным

электро­ном, было получено следующее выражение для увеличения длины волны фотона при его рассеянии на свободных электронах:

.

(На рисунке 11 введены следующие обозначения: p и p' – импульсы фотона до и после рассеяния; pe – импульс электрона после рассеяния на нем фотона).

Полученное на основе корпускулярных свойств света, выражение для величины Dl оказалось аналогично приведенному выше выражению для величины Dl, полученному Комптоном экспериментально. Следовательно, эффект Комптона является экспериментальным доказательством проявления корпускулярных свойств света как потока частиц – фотонов.

Единство корпускулярных и волновых свойств света и вещества. С одной стороны, рассмотренные явления фотоэффекта и эффекта Комптона служат доказательством квантовых (корпускулярных) представлений о свете как о потоке фотонов, а, с другой стороны, такие явления, как интерференция, дифракция и поляризация света подтверждают волновую природу света. Свет, обладая одновременно корпускулярными и волновыми свойствами, проявляет так называемый корпускулярно-волновой дуализм.

Развивая представления о двойственной корпускулярно-волновой приро­де света, Луи де Бройль выдвинул гипотезу об универсальности корпускулярно-волнового дуализма. Де Бройль утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают также и волновыми свойствами.

Cогласно гипотезе де Бройля с каждым микрообъектом связываются, с одной сторо­ны, корпускулярные характеристики, такие как энергия e и импульс p , а с другой стороны – волновые характеристики, такие как частота n и длина волны l . Количественные соотношения, связыва­ющие корпускулярные и волновые свойства частиц, такие же, как и для фотонов:

, .

Согласно гипотезе де Бройля любой частице, обладающей импульсом p, ставится в соответствие волновой процесс с длиной волны, определяемойпо формуле де Бройля: .

Тема 7. Тепловое излучение

Излучение света телами, обусловлен­ное их нагреванием, называется тепловым (температурным) излучением. Количественной характеристикой теплового излучения служит спектральная плот­ность энергетической светимости (излучательности) тела – мощность излучения с еди­ницы площади поверхности тела в интервале частот единичной ширины:

,

где – энергия электромагнитного излучения, испускаемого за единицу време­ни (мощность излучения) с единицы площади поверхности тела в интервале частот от n до n + dn .

Спектральную плот­ность энергетической светимостиможно представить в виде функции длины волны l , то есть в виде Rl,T , причем:

.

С помощью этой формулы можно перейти от Rn,T к Rl,T и наоборот.

Зная спектральную плотность энергетической светимости, можно вычислить интег­ральную энергетическую светимостьRT :

.

Способность тел поглощать падающее на них излучение характеризуется спект­ральной поглощательной способностью Аn,T :

,

показывающей, какая доля энергии, приносимой за единицу времени на единицу площади поверхности тела падающими на нее электромагнитными волнами с частота­ми от n до n + dn , поглощается телом.

Тело, способное поглощать полностью при любой температуре всё падающее на него излучение любой частоты, называется черным телом. Следовательно, спектральная поглощательная способность черного тела для всех частот и температур тождественно равна единице ().

Наряду с понятием черного тела используют понятие серого тела – тела, поглощательная способность которого меньше единицы, но одинакова для всех частот, то есть .

Закон Кирхгофа. Кирхгоф установил количественную связь между спектральной плотностью энергетической светимости Rn,T и спектральной поглощательной способностью Аn,T тел. Отношение спектральной плотности энергетической светимости к спектральной поглощательной способности не зависит от природы тела; оно является для всех тел универсальной функцией rn,T частоты n ( или длины волны l) и температуры Т(закон Кирхгофа):

.

Для черного тела , поэтому из закона Кирхгофа вытекает, что универсальная функция Кирхгофа rn,T – это спектральная плотность энергетической светимости Rn,T черного тела.

Используя закон Кирхгофа, выражение для интег­ральной энергетической светимости черного тела Re можно записать в виде:

.

Энергетическая светимость черного тела Re зависит только от температуры.

Закон Стефана – Больцмана. Согласно закону Стефана – Больцманаэнергетическая светимость черного тела Re зависит от температуры Т следующим образом: , где s – постоянная Стефана – Больцмана.

Рис. 12
Закон смещения Вина. Из эксперимен­тальных кривых зависимости функции rl,T от длины волны l при различных температурах (рис. 12) следует, что распределение энергии в спектре черного тела является неравномерным. Все кривые имеют выраженный максимум, который по мере повышения температуры смещается в сторону более коротких волн.

Согласно закону смещения Вина зависимость длины волны lmax , соответствующей максимуму функции rl,T , от температуры Т имеет следующий вид: ,

то есть длина волны lmax , соответствующая максимальному значению спектральной плотности энергетической светимости rl,T черного тела, обратно пропорциональна его температуре Т (b - постоянная Вина). Это выражение называют законом смещения Вина, так как оно показывает смещение положения максимума функции rl,T в область коротких длин волн по мере возрастания температуры Т .

Тема 8. Квантовая физика атома. Постулаты Бора

Первый постулат Бора (постулат стационарных состояний):в атоме существуют стационарные (не изменяющиеся со временем) состояния, находясь в которых атом не излучает энергии. Стационарным состояниям атома соответствуют стационарные орбиты, на которых находятся электроны.

В стационарном состоянии атома для электрона, находящегося на круговой орбите, значения момента импульса могут принимать только определенный набор дискретных квантованных значений, удовлетворяющих условию:

( n = 1, 2, 3, …), где

me масса электрона, υn – скорость электрона на n-ой орбите радиуса rn,

n – номер орбиты,

ħ = (h – постоянная Планка).

Радиус n-ой орбиты для атома водорода:

,

где e – заряд электрона, εo – электрическая постоянная,

а – радиус первой орбиты ( n = 1), называемый первым боровским радиусом,который равен:

.

 

Второй постулат Бора (правило частот):при переходе электрона с одной стационар­ной орбиты на другую излучается (или поглощается) один фотон с энергией, равной разности энергий соответствующих стационарных состояний En и Еm :

.

При переходе атома из состояния большей энергии в состояние меньшей энергии, то есть при переходе электрона на менее удаленную от ядра орбиту, происходит излучение фотона, а при поглощении фотона происходит переход атома из состояния меньшей энергии в состояние большей энергии, что соответствует переходу электрона на более удаленную орбиту.

Дискретность набора значений энергии стационарных состояний En и Еm предопределяет дискретность набора возможных частот ν квантовых переходов между этими состояниями, что обусловливает линейчатость спектра атома.

По теории Бора полная энергия электрона на n-ой орбите атома водорода:

( n = 1, 2 , 3, …),

Из приведенной формулы следует, что энергетические состояния атома водорода образуют после­довательность энергетических уровней, изменяющихся в зависимости от значения числа n , которое называется главным квантовым числом.

Энергетическое состояние с n = 1 является основнымсостоянием, а состояния с n >1 являются возбужденными.

Спектр испускания атома водорода.

Согласно второму постулату Бора, при переходе атома водорода из состояния n в состоя­ние т с меньшей энергией испускается фотон с энергией :

,

откуда частота ν квантового перехода в спектре испускания атома водорода:

,

где R – постоянная Ридберга () ,

Числа m (m = 1, 2, 3 …) и n (n = m + 1, m + 2, m + 3, …) определяют номера электронных орбит в атоме, между которыми происходит квантовый переход.

Приведенная формула описывает серии линий в спектре испускания атома водорода (рис. 13), где m определяет серию (m = 1, 2, 3…), а n определяет отдельные линии соответствующей серии (n = m + 1, m + 2, m + 3, …).

 

 
Рис. 13.

В ультрафиолетовой области спектра атома водорода наблюдается

серия Лаймана (m = 1): (n = 2, 3, 4, …).

В видимой области спектра атома водорода наблюдается

серия Бальмера (m = 2): (n = 3, 4, 5, …).

В инфракрасной области спектра атома водорода наблюдаются

серия Пашена (m = 3): (n = 4, 5, 6, …);

серия Брэкета (m = 4): (n = 5, 6, 7, …);

серия Пфунда (m = 5): (n = 6, 7, 8, …);

серия Хэмфри (m = 6): (n = 7, 8, 9, …).

Квантовые числа и правила отбора. Состояние электрона в атоме водорода определяется набором квантовых чисел: n, l , ml .

n –главное квантовое число, определяющее энергетические уровниэлектрона в атоме и принимающее целочисленные значения начиная от еди­ницы:

n = 1, 2 , 3, … .

l орбитальное квантовое число, определяющее момент импульса электрона в атоме и для заданного главного квантового числа n принимающее следующие значения: l = 0, 1, …, (n – 1), то есть всего n значений.

тl магнитное квантовое число, определяющеепроекцию момента импульса электрона на заданное направление и при заданном орбитальном квантовом числе l принимающее следующие значения:

тl = 0, ±1, ±2, …, ±l ,

то есть всего (2l+1) значений, причем вектор момента импульса электрона в атоме может иметь в пространстве (2l + 1) ориентацию.

Если орбитальное квантовыми число l = 0, то состояние электрона называют s-состоянием, для l = 1 – p-состоянием, для l = 2 – d-состоянием, для l = 3 – f-состоянием и т. д. Значение главного квантового числа указывается перед условным обозначением орбитального квантового числа. Например, электроны в состояниях (n = 2, l = 0) и (n = 2, l = 1) обозначаются соответственно символами 2sи 2р.

Число возможных переходов электронов, связанных с испусканием или поглощением света, ограничено, так называемыми, правилами отбора.

Те­оретически доказано и экспериментально подтверждено, что могут осуществляться только такие переходы, для которых:

1) изменение орбитального квантового числа Dl удовлетворяет условию:

l = ±1 ;

2) изменение магнитного квантового числа Dmlудовлетворяет условию:

– Конец работы –

Эта тема принадлежит разделу:

Учебно-методическое пособие КОНСПЕКТ ЛЕКЦИЙ по физике Учебно-методическое пособие

Федеральное государственное бюджетное образовательное учреждение... высшего профессионального образования... Ростовский государственный строительный университет...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Тема 6. Корпускулярная оптика

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Кинематика поступательного движения
Положение материальной точки А в декартовой системе координат в данный момент времени определяется тремя координатами x, y и z или радиусом-вектором

Кинематика вращательного движения
Пусть некоторая точка движется по окружности радиуса r. Изменение положения точки в пространстве за промежуток времени Dt определяется углом поворота

Тема 2. Динамика поступательного движения. Законы Ньютона
Первый закон Ньютона: существуют такие системы отсчета, в которых всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор,

Тема 3. Работа. Кинетическая, потенциальная и полная энергия
Работа. Если на тело, движущееся прямолинейно, действует постоянная сила , которая составляет некоторый уг

Тема 4. Момент инерции твердого тела. Теорема Штейнера
Моментом инерции материальной точкимассой m относительно некоторой оси вращения называется физическая величина I, равная произведению массы этой материальной точки на

Тема 5. Кинетическая энергия и работа вращательного движения Уравнение динамики вращательного движения твердого тела
При вращении твердого тела относительно неподвижной оси отдельные его точки, находящиеся на различном расстоянии от оси вращения, имеют различные скорости

Тема 6. Момент импульса. Закон сохранения момента импульса
Моментом импульса материальной точки,вращающейся относительно неподвижной оси OO′, называется величина L, равная произведению импульса

Тема 7. Механические колебания. Пружинный маятник
Механическими колебаниями называются движения, характеризующиеся определенной повторяемостью во времени. Колебания называютсясвободными (

Вынужденные гармонические колебания пружинного маятника
Незатухающие гармонические колебания в реальной колебательной системе можно получить с помощью внешней вынуждающей силы F(t), изменяющейся по гармоническому закону:

Тема 8. Гармонические колебания физического маятника
Физический маятник – это твердое тело, имеющее ось вращения и совершающее колебания под действием тангенциальной составляющей силы тяжести Ft (Ft =

Тема 9. Механические волны
Процесс распространения колебаний в сплошной среде называется волной. Упругими (или механическими) называются волны, распространяющиеся в упругой среде. Упругие во

Тема 10. Механика жидкости. Уравнение Бернулли
Гидростатика. Для несжимаемой жидкости ее плотность не зависит от давления. При поперечном сечении S столба жидкости плотностью r и высотой h давление ж

Тема 1. Уравнение состояния идеального газа.
Состояние системы задаетсятермодинамическими параметрами – совокупностью физических величин, характеризующих свойства термодинамической системы, например, давлением р, объем

Тема 2. Термодинамические процессы. Изопроцессы.
Любое изменение в системе, связанное с изменением ее термодинамических параметров, называетсятермодинамическим процессом. Из уравнения Клапейрона – Менделеева следует, что

Идеального газа.
Основное уравнение молекулярно-кинетической теории идеального газа связывает термодинамические параметры газа с параметрами, характеризующими движение его молекул. Так, давление газа, как следствие

Тема 4. Распределение молекул идеального газа по скоростям.
В газе, находящемся в состоянии равновесия при определенной температуре, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям. Максвелл установил, чт

Тема 5. Барометрическая формула. Распределение Больцмана.
Барометрическая формула определяет зависимость атмосферного давления воздуха от высоты. Молекулы воздуха находятся, с одной стороны, в потенциальном поле сил тяготения Земли, а, с другой – , в сост

Тема 6. Явления переноса (диффузия, теплопроводность, вязкость).
В неравновесных системах возникают особые необратимые процессы, называемые явлениями переноса, в результате которых происходит пространственный перенос массы, энергии, импульса.

Тема 7. Первое начало термодинамики. Внутренняя энергия. Работа. Применение первого начала термодинамики к изопроцессам.
Внутренней энергией газа U называется сумма кинетической энергии хаотического (теплового) движения всех молекул газа и энергии взаимодействия молекул газа между собой. Для и

Работа газа при изопроцессах.
1. Изобарный процесс (p = const). При изобарном процессе работа газа при увеличении объема от V1 до V2 равна:

Тема 8. Теплоемкость газа при изопроцессах. Уравнение Майера.
Теплоемкостьютела называется величина, равная количеству теплоты, которое нужно сообщить телу, чтобы повысить его температуру на 1 К. Удельная теплоемкость

Тема 9. Адиабатический процесс.
Адиабатическим называется процесс, при котором отсутствует теплообмен между системой и окружающей средой. При адиабатическом процессе изменяются все термодинамические параметры (

Работа газа при адиабатическом процессе.
Из первого начала термодинамики () для адиабатического процесса () следует, что

Тема 10. Обратимый и необратимый процессы. Круговой процесс. Тепловая машина и цикл Карно.
Термодинамический процесс называется обратимым, если он может проходить как в прямом, так и в обратном направлении, причем если такой процесс проходит сначала в прямом, а затем в о

ЧАСТЬ III. ЭЛЕКТРИЧЕСТВО и МАГНЕТИЗМ
ЭЛЕКТРОСТАТИКА Тема 1. Теорема Остроградского-Гаусса для электростатического поля Электростатическое поле – это особый вид материи, с помощью которой происходит взаимодействие зар

Для стационарных электрического и магнитного полей
В случае стационарных (то есть неменяющихся во времени) электрического и магнитного полей, происхождение которых связано с покоящимися зарядами для электрического поля и со стационарными токами для

Тема 8. Уравнения Максвелла для электромагнитного поля
Согласно теории Максвелла для электромагнитного поля в случае нестационарных (то есть, изменяющихся во времени) электрического и магнитного полей, источниками электрического поля м

Уравнение свободных незатухающих гармонических колебаний.
Для возбуждения в контуре колебаний предварительно заряжают конденсатор, сообщая его обкладкам заряд ±q. Тогда в начальный момент времени t=0 (рис. 19, а) между обкладками конд

ЧАСТЬ IV. Волновая и квантовая оптика
  Тема 1. Волновая теория света. Интерференция света Инт

Условия интерференционного максимума и минимума
Если оптическая разность хода D равна целому числу длин волн l0 , т.е. (

Тема 3. Дифракция Фраунгофера
Фраунгофер рассмотрел дифракцию плоских световых волн,илидифракцию в параллельных лучах,которую можнонаблюдать в том случае, если источник света и точка наблюдения

Дифракция Фраунгофера на дифракционной решетке.
Одномерная дифракционная решетка – это система параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непроз­рачными промежутками.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги