рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Тема 5. Кинетическая энергия и работа вращательного движения Уравнение динамики вращательного движения твердого тела

Тема 5. Кинетическая энергия и работа вращательного движения Уравнение динамики вращательного движения твердого тела - раздел Физика, Учебно-методическое пособие конспект лекций по физике Учебно-методическое пособие При Вращении Твердого Тела Относительно Неподвижной Оси Отдельные Его Точки, ...

При вращении твердого тела относительно неподвижной оси отдельные его точки, находящиеся на различном расстоянии от оси вращения, имеют различные скорости . Поэтому для того, чтобы найти кинетическую энергию вращательного движения твердого тела,необходимо разбить это тело на элементарные объемы так, чтобы каждый элементарный объем можно было рассматривать как материальную точку массой , находящуюся на определённом расстоянии от данной оси вращения. Тогда кинетическая энергия вращательного движения твердого теларавна суммекинетических энергий всех n материальных точек массами , на которые разбито это тело: .

Так как для твердого тела угловая скорость вращения всех материальных точек, на которые разбито это тело, одинакова, то

,

где момент инерции тела относительно его оси вращения.

Момент силы.Если на тело, имеющее ось вращения ОО′,действует сила , причем вектор силырасположен в плоскости,перпендикулярной осиОО′ (рис. 5), то моментом этой силы относительно неподвижной оси ОО′называется величина, равная произведению модуля силы на плечо l этой силы относительно оси ОО′: ,

где l – плечо силы , то есть кратчайшее расстояние между осью ОО и линией действия силы .

(Момент силы относительно оси вращения ОО′ является векторной величиной, определяется векторным произведением векторов и (рис. 5):, направлен вдоль оси вращения ОО′ в соответствии с правилом правого винта, а модуль вектора определяется в виде ).

Рис. 5

Работа при вращении твердого тела. При повороте тела на бесконечно малый угол вокруг оси OO′ под действием силы совершается элементарная работа: ,

где момент силы относительно оси OO′.

Уравнение динамики вращательного движения твердого тела. Уравнение динамики вращательного движения твердого тела может быть получено, исходя из того, что элементарная работа при вращении твердого тела идет на элементарное увеличение его кинетической энергии, то есть:

dA=dT.

Так как , а , то

или .

Учитывая, что , а ,

получим:

или в векторном виде: .

В приведенной формуле: – вектор углового ускорения;

– вектор момента силы, действующей на тело, относительно его оси вращения; I – момент инерции тела относительно его оси вращения.

В том случае, если на тело, имеющее ось вращения, действует не одна, а несколько сил, то приведенный в этой формуле момент силы является результирующим моментом всех действующих на это тело сил и определяется векторной суммой всех моментов действующих сил относительно оси вращения данного тела.

Это уравнение естьуравнение динамики вращательного движения твердого тела: если на тело, имеющее ось вращения, действуют силы, то это тело приобретает угловое ускорение, прямо пропорциональное векторной сумме моментов всех действующих сил и обратно пропорциональное моменту инерции тела относительно его оси вращения.

– Конец работы –

Эта тема принадлежит разделу:

Учебно-методическое пособие конспект лекций по физике Учебно-методическое пособие

Федеральное государственное бюджетное образовательное учреждение.. высшего профессионального образования.. Ростовский государственный строительный университет..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Тема 5. Кинетическая энергия и работа вращательного движения Уравнение динамики вращательного движения твердого тела

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Кинематика поступательного движения
Положение материальной точки А в декартовой системе координат в данный момент времени определяется тремя координатами x, y и z или радиусом-вектором

Кинематика вращательного движения
Пусть некоторая точка движется по окружности радиуса r. Изменение положения точки в пространстве за промежуток времени Dt определяется углом поворота

Тема 2. Динамика поступательного движения. Законы Ньютона
Первый закон Ньютона: существуют такие системы отсчета, в которых всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор,

Тема 3. Работа. Кинетическая, потенциальная и полная энергия
Работа. Если на тело, движущееся прямолинейно, действует постоянная сила , которая составляет некоторый уг

Тема 4. Момент инерции твердого тела. Теорема Штейнера
Моментом инерции материальной точкимассой m относительно некоторой оси вращения называется физическая величина I, равная произведению массы этой материальной точки на

Тема 6. Момент импульса. Закон сохранения момента импульса
Моментом импульса материальной точки,вращающейся относительно неподвижной оси OO′, называется величина L, равная произведению импульса

Тема 7. Механические колебания. Пружинный маятник
Механическими колебаниями называются движения, характеризующиеся определенной повторяемостью во времени. Колебания называютсясвободными (

Вынужденные гармонические колебания пружинного маятника
Незатухающие гармонические колебания в реальной колебательной системе можно получить с помощью внешней вынуждающей силы F(t), изменяющейся по гармоническому закону:

Тема 8. Гармонические колебания физического маятника
Физический маятник – это твердое тело, имеющее ось вращения и совершающее колебания под действием тангенциальной составляющей силы тяжести Ft (Ft =

Тема 9. Механические волны
Процесс распространения колебаний в сплошной среде называется волной. Упругими (или механическими) называются волны, распространяющиеся в упругой среде. Упругие во

Тема 10. Механика жидкости. Уравнение Бернулли
Гидростатика. Для несжимаемой жидкости ее плотность не зависит от давления. При поперечном сечении S столба жидкости плотностью r и высотой h давление ж

Тема 1. Уравнение состояния идеального газа.
Состояние системы задаетсятермодинамическими параметрами – совокупностью физических величин, характеризующих свойства термодинамической системы, например, давлением р, объем

Тема 2. Термодинамические процессы. Изопроцессы.
Любое изменение в системе, связанное с изменением ее термодинамических параметров, называетсятермодинамическим процессом. Из уравнения Клапейрона – Менделеева следует, что

Идеального газа.
Основное уравнение молекулярно-кинетической теории идеального газа связывает термодинамические параметры газа с параметрами, характеризующими движение его молекул. Так, давление газа, как следствие

Тема 4. Распределение молекул идеального газа по скоростям.
В газе, находящемся в состоянии равновесия при определенной температуре, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям. Максвелл установил, чт

Тема 5. Барометрическая формула. Распределение Больцмана.
Барометрическая формула определяет зависимость атмосферного давления воздуха от высоты. Молекулы воздуха находятся, с одной стороны, в потенциальном поле сил тяготения Земли, а, с другой – , в сост

Тема 6. Явления переноса (диффузия, теплопроводность, вязкость).
В неравновесных системах возникают особые необратимые процессы, называемые явлениями переноса, в результате которых происходит пространственный перенос массы, энергии, импульса.

Тема 7. Первое начало термодинамики. Внутренняя энергия. Работа. Применение первого начала термодинамики к изопроцессам.
Внутренней энергией газа U называется сумма кинетической энергии хаотического (теплового) движения всех молекул газа и энергии взаимодействия молекул газа между собой. Для и

Работа газа при изопроцессах.
1. Изобарный процесс (p = const). При изобарном процессе работа газа при увеличении объема от V1 до V2 равна:

Тема 8. Теплоемкость газа при изопроцессах. Уравнение Майера.
Теплоемкостьютела называется величина, равная количеству теплоты, которое нужно сообщить телу, чтобы повысить его температуру на 1 К. Удельная теплоемкость

Тема 9. Адиабатический процесс.
Адиабатическим называется процесс, при котором отсутствует теплообмен между системой и окружающей средой. При адиабатическом процессе изменяются все термодинамические параметры (

Работа газа при адиабатическом процессе.
Из первого начала термодинамики () для адиабатического процесса () следует, что

Тема 10. Обратимый и необратимый процессы. Круговой процесс. Тепловая машина и цикл Карно.
Термодинамический процесс называется обратимым, если он может проходить как в прямом, так и в обратном направлении, причем если такой процесс проходит сначала в прямом, а затем в о

ЧАСТЬ III. ЭЛЕКТРИЧЕСТВО и МАГНЕТИЗМ
ЭЛЕКТРОСТАТИКА Тема 1. Теорема Остроградского-Гаусса для электростатического поля Электростатическое поле – это особый вид материи, с помощью которой происходит взаимодействие зар

Для стационарных электрического и магнитного полей
В случае стационарных (то есть неменяющихся во времени) электрического и магнитного полей, происхождение которых связано с покоящимися зарядами для электрического поля и со стационарными токами для

Тема 8. Уравнения Максвелла для электромагнитного поля
Согласно теории Максвелла для электромагнитного поля в случае нестационарных (то есть, изменяющихся во времени) электрического и магнитного полей, источниками электрического поля м

Уравнение свободных незатухающих гармонических колебаний.
Для возбуждения в контуре колебаний предварительно заряжают конденсатор, сообщая его обкладкам заряд ±q. Тогда в начальный момент времени t=0 (рис. 19, а) между обкладками конд

ЧАСТЬ IV. Волновая и квантовая оптика
  Тема 1. Волновая теория света. Интерференция света Инт

Условия интерференционного максимума и минимума
Если оптическая разность хода D равна целому числу длин волн l0 , т.е. (

Тема 3. Дифракция Фраунгофера
Фраунгофер рассмотрел дифракцию плоских световых волн,илидифракцию в параллельных лучах,которую можнонаблюдать в том случае, если источник света и точка наблюдения

Дифракция Фраунгофера на дифракционной решетке.
Одномерная дифракционная решетка – это система параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ширине непроз­рачными промежутками.

Тема 6. Корпускулярная оптика
Соглас­но квантовой гипотезе Планка-Эйнштейна свет частотой n испускается, распространяется и поглощается веществом отдельными порциями (квантами), энергия которых e

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги