рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Теоретические сведения

Теоретические сведения - Лабораторная Работа, раздел Механика, Определение механических свойств конструкционных материалов путем испытания их на растяжение К Железоуглеродистым Сплавам Относят Стали (Содержание Углерода - До 2,14%) И...

К железоуглеродистым сплавам относят стали (содержание углерода - до 2,14%) и чугуны (содержание углерода - свыше 2,14%), которые по масштабу и многообразию своего применения имеют важное значение для современной техники.

Чтоб разобраться в сложных и разнообразных структурных превращениях в сплавах на основе железа и сознательно воздействовать на них путем термообработки для получения требуемых свойств, необходимо рассмотреть превращения в железоуглеродистых сплавах в условиях фазового равновесия, т.е. ознакомиться с диаграммой состояния «железо-углерод».

 

Компоненты и фазы в системе «железо-углерод»

Железо – металл серебристо-серого цвета, очень пластичный, с удельным весом 7,8 г/см3, температурой плавления 1539°С. Оно имеет несколько аллотропических превращений (аллотропия, или полиморфизм, – способность некоторых веществ при одном и том же химическом составе изменять тип кристаллической решетки, а следовательно, иметь различные свойства), которые наглядно показаны на кривой охлаждения чистого железа (рис. 6.1).

В процессе кристаллизации из жидкой фазы при температуре 1539°С образуются кристаллы d-железа с объемно центрированной кубической кристаллической решеткой (ОЦК), которое обозначается Fed. При дальнейшем охлаждении d-железо сохраняется до температуры 1392°С, при которой происходит полиморфное превращение d-железа в g-железо с гранецентрированной кубической кристаллической решеткой (ГЦК), которое обозначается Feg; g-железо устойчиво до температуры 911°С. При температуре 911°С опять происходит полиморфное превращение g-железа в b-железо с ОЦК кристаллической решеткой (обозначается Feb).

Рис. 6.1. Кривая охлаждения чистого железа

 

При температуре 768°С (точка Кюри) наблюдается магнитное превращение, в результате которого образуется ферромагнитное a-железо с ОЦК кристаллической решеткой, которое обозначается Fea.

Модификации железа a, b и d обладают одной и той же ОЦК кристаллической решеткой. Следовательно, самостоятельными кристаллическими модификациями железа являются только a- и g-железо.

Обозначение критических точек железа. Температуры полиморфных превращений железа принято называть критическими точками и обозначать их буквой А с соответствующими индексами 2, 3, 4, указывающими на характер превращения. Чтобы отличить превращения, протекающие в железоуглеродистых сплавах при нагревании, от превращений при охлаждении принято к обозначению критических точек добавлять: при нагревании - индекс с, при охлаждении - индекс r. Например, точка А3 обозначает температуру аллотропического превращения Fea«Feg.

Углерод – неметаллический элемент с удельным весом 2,265 г/см3, температурой плавления 3500°С. Углерод имеет две аллотропические модификации: графита и алмаза. В форме графита в сплавах углерод встречается только в серых чугунах.

В железоуглеродистых сплавах присутствуют следующие твердые

фазы:

Аустенит (А) – твердый раствор внедрения углерода в g-железе.

Аустенит имеет кубическую гранецентрированную кристаллическую решетку. Растворимость углерода в Feg зависит от температуры: чем выше температура, тем больше растворимость. Максимальная растворимость углерода в Feg равна 2,14% при температуре 1147°С, при температуре 727°С растворимость равна 0,8%. Аустенит обладает высокой пластичностью, низкими пределами текучести и прочности. Твердость НВ составляет 170…220.

Феррит (Ф) – твердый раствор внедрения углерода в a-железе. Феррит имеет кубическую объемно центрированную кристаллическую решетку. Растворимость углерода в Fea также зависит от температуры. Максимальная растворимость углерода в Fea равна 0,02% при температуре 727°С, максимальная растворимость при комнатной температуре – 0,006%. Феррит (при 0,006% С) имеет следующие механические свойства sв = 250 МПа,

s0,2 = 120 МПа, d = 50% , y = 80%, НВ 80…90.

Цементит (Ц) – химическое соединение железа с углеродом Fe3C, содержащее 6,67% углерода. Он обладает сложной кристаллической решеткой, тепло- и электропроводностью, слабыми магнитными свойствами, высокой твердостью НВ 800, отличается хрупкостью. До температуры 210°С цементит ферромагнитен. Температура плавления цементита – 1260°С.

Различают: первичный цементит ЦI, который выделяется из жидкой фазы во всех железоуглеродистых сплавах, содержащих углерода более

2,14 %; вторичный цементит ЦII, который выделяется из аустенита в железоуглеродистых сплавах, содержащих более 0,8% углерода, в интервале температур от 1147 до 727°С; третичный цементит ЦIII – выделяется из феррита в железоуглеродистых сплавах, содержащих более 0,006% углерода, в интервале температур от 727 до 0°С. Если в железоуглеродистом сплаве находятся одновременно несколько разновидностей цементита, то все они являются одной фазой, т.е. химическим соединением, так как имеют один и тот же состав, строение и свойства.

Графит. Кристаллическая решетка графита - гексагональная слоистая. Он мягкий, обладает низкой прочностью и электропроводностью.

В железоуглеродистых сплавах могут присутствовать следующие двухфазные структуры:

Перлит (П) – эвтектоидная механическая смесь, состоящая из двух фаз: феррита и цементита. Перлит образуется из аустенита определенного состава (0,8% С) при температуре 727°С. Содержание углерода в перлите для всех железоуглеродистых сплавов всегда постоянно и составляет 0,8%. В равновесии перлит имеет пластинчатое строение (см. микроструктуру). В результате термообработки можно получить перлит зернистый, но такая структура будет неравновесной. Механические свойства перлита зависят от степени измельченности частичек цементита и формы цементита. Сталь со структурой пластинчатого перлита имеет такие свойства: sв = 820 МПа,

d = 15%, НВ 220; сталь с зернистым перлитом - sв = 630 МПа, d = 20%,

НВ 160.

Ледебурит (Л) – эвтектическая смесь, образующаяся при постоянной температуре 1147°С из жидкой фазы определенного состава (4,3% С). При температуре 1147°С и до 727°С ледебурит состоит из двух фаз – аустенита и цементита; ниже 727°С ледебурит состоит из двух структур – перлита и цементита, т.е. также из двух фаз, но только уже из феррита и цементита. Содержание углерода в ледебурите всегда постоянно и равно 4,3%.

 

Диаграмма состояния «железоцементит»

На диаграмме состояния «железо–цементит» приведены фазовый состав и структура сплавов с концентрацией углерода от 0 до 6,67% (рис. 6.2).

Область перитектического превращения в районе температуры плавления чистого железа условно не показана.

Линия АСD – линия ликвидус, линия начала кристаллизации сплавов. Выше этой линии все сплавы находятся в жидком состоянии.

Линия АECF – линия солидус, линия конца кристаллизации сплавов. Ниже этой линии все сплавы находятся в твердом состоянии.

Линии АС и DС показывают температуры начала кристаллизации аустенита (АС) и первичного цементита (DС). При выделении из жидкой фазы кристаллов аустенита состав жидкой фазы будет обогащаться углеродом и по мере снижения температуры изменяться по линии АС. Состав твердой фазы (аустенита) при этом будет обогащаться углеродом и изменяться по линии АE. При выделении из жидкой фазы кристаллов первичного цементита состав ее будет обедняться углеродом и с понижением температуры изменяться по линии DС. Состав твердой фазы (цементита) остается постоянным. Количество углерода в цементите – 6,67%.

При достижении температуры 1147°С состав жидкой фазы для любого сплава, расположенного между концентрациями от точки Е (2,14% С) до точки F (6,67% С), будет соответствовать точке С (4,3% С). При этой температуре оставшаяся часть жидкой фазы данного состава кристаллизуется при постоянной температуре с образованием эвтектической механической смеси, содержащей то же количество углерода, что и жидкость, т.е. 4,3%. Эта эвтектика называется ледебуритом. Она состоит из аустенита состава точки Е (2,14% С) и цементита состава точки F (6,67% С) Ж.ФС « ЛСЕ + Fe3C). Линия ЕСF обозначает постоянную температуру образования эвтектики ледебурита и температуру конца кристаллизации сплавов, содержащих углерода более 2,14%. Эта линия называется линией эвтектического превращения. Структура сплава, содержащего 4,3% углерода, будет состоять только из ледебурита. В сплавах, расположенных левее точки С, в избытке будет находиться аустенит и структура их после затвердевания будет состоять из первичных кристаллов аустенита и ледебурита; для сплавов, расположенных правее точки С в избытке будет находиться цементит, поэтому структура этих сплавов после затвердевания состоит из первичных кристаллов цементита и ледебурита.

Сплавы, расположенные левее точки Е, после окончания процесса кристаллизации (область АESG) имеют структуру аустенита.

При дальнейшем охлаждении затвердевших железоуглеродистых сплавов ниже линии АECF (линия солидус) происходят процессы, связанные с изменением растворимости углерода в железе a и g, а также процессы, которые обуславливаются полиморфным превращением железа.

Линия GS показывает температуру начала превращения аустенита в феррит. В сплавах, находящихся левее точки S, при понижении температуры ниже линии GS из аустенита будут выделяться кристаллы феррита.

Линия ЕS представляет собой линию изменения предельной растворимости углерода в аустените в зависимости от температуры. При охлаждении ниже этой линии происходит выделение из аустенита вторичного цементита, а при нагреве на этой линии заканчивается распад вторичного цементита и растворение углерода в аустените. Состав аустенита при понижении температуры будет все время изменяться: в сплавах, находящихся левее точки S, - обогащаться углеродом и изменяться по линии GS; в сплавах, находящихся правее точки S, - обедняться углеродом и изменяться по линии ES.

Ниже линии SECF во всех сплавах при охлаждении из аустенита будет выделяться вторичный цементит по закону линии ES.

При достижении в процессе охлаждения сплавов температуры 727°С состав аустенита для всех сплавов будет соответствовать точке S (0,8% С). При этой температуре аустенит будет превращаться в эвтектоидную механическую смесь, состоящую из феррита и цементита, которая называется перлитом: АS « ПSP + Fe3C).

Следовательно, линия PSK показывает постоянную температуру образования перлита (эвтектоида) при охлаждении. Линия PSK называется линией эвтектоидного, или перлитного, превращения.

Образование перлита протекает при строго определенной постоянной температуре (727°С). Структура сплава, содержащего 0,8% углерода, ниже 727°С будет состоять из перлита. В сплавах, расположенных левее точки S, в избытке будет находиться феррит. Структура таких сплавов состоит из феррита и перлита. Количество феррита увеличивается с уменьшением содержания углерода в сплаве. В сплавах, расположенных правее точки S, в избытке будет находиться цементит. С увеличением содержания углерода количество цементита будет расти. Структура этих сплавов будет состоять из перлита и вторичного цементита (от 0,8 до 2,14% С), при этом вторичный цементит выделяется по границам зерен в виде цементитной сетки; перлита, вторичного цементита и ледебурита (от 2,14 до 4,3% С); ледебурита

(4,3% С); первичного цементита и ледебурита (от 4,3 до 6,67% С).

Линия GP показывает температуру конца превращения аустенита в феррит. При охлаждении железоуглеродистых сплавов ниже линии PSK из феррита при понижении температуры будет выделяться третичный цементит. Это связано с уменьшением растворимости углерода в a-железе.


Рис. 6.2. Диаграмма состояния «железо-цементит»


Линия PQ показывает температуру начала выделения третичного цементита из феррита. Третичный цементит может присутствовать во всех сплавах, содержащих более 0,006% С, однако как отдельная фаза он находится только в сплавах, содержащих от 0,006 до 0,02% С.

На рис. 6.3 показана диаграмма состояния системы «железо-цементит» и приведен ряд сплавов с различной концентрацией углерода. Описание процессов, протекающих в сплавах при их охлаждении из жидкого состояния, приведено в табл. 6.1.

Рис. 6.3. Диаграмма состояния системы «железо-цементит»

 

– Конец работы –

Эта тема принадлежит разделу:

Определение механических свойств конструкционных материалов путем испытания их на растяжение

Содержание.. введение и методические рекомендации лабораторная работа определение механических..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Теоретические сведения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Предел упругости s0,05 как и предел пропорциональности, определяется расчетным или графическим способом
Точно так же определяется и модуль упругости Е, МПа (кгс/мм2): . (1.2)  

Порядок выполнения работы
1. Измерить диаметр испытуемых образцов; вычислить площадь F0 образцов; полученные результаты занести в табл. 1.2. 2. Занести в табл. 1.3 параметры машины. 3. Разорвать

Метод Бринелля
Метод измерения твердости металлов и сплавов по Бринеллю регламентируется ГОСТ 9012-59 (СТ СЭВ 468-77). Сущность метода заключается во вдавливании стального закаленного шарика диаметром 2,

Метод Роквелла
Измерение твердости металлов и сплавов по методу Роквелла осуществляется вдавливанием алмазного конуса или стального шарика с последующим определением твердости по глубине получаемого отпечатка (ГО

Порядок выполнения работы
1. Проверить соответствие образцов требованиям. 2. По табл. 2.4 выбрать шкалу, нагрузку и вид наконечника. 3. Включить прибор тумблером 8 (см. рис. 2.5), при этом должна загоретьс

Микроструктурный анализ металлов и сплавов
Микроструктурный анализ заключается в исследовании строения (структуры) металлов и сплавов с помощью оптических металлографических микроскопов с увеличением от 50 до 1500 раз или с помощью э

Объективов и окуляров микроскопа МИМ-7
      Объективы На матовом стекле При визуальном наблюдении Окуляры 7

Вспомогательные устройства микроскопа
При проведении количественных исследований (определение величины зерна, глубины цементированного слоя и др.) пользуются окулярными вкладышами. Это стеклянные пластинки, на которые нанесены шкала, п

Механизм пластической деформации монокристаллов
Межатомные силы в кристаллических телах складываются из электростатических сил притяжения и отталкивания. Равнодействующая этих сил на некотором межатомном расстоянии равна нулю. При сближ

И сплавов
При нагреве пластически деформированные металлы постепенно восстанавливают свою структуру и свойства и переходят в устойчивое состояние. Этот переход можно разбить на две стадии: возврат и рекриста

Некоторые положения теории сплавов
Сплавом называется вещество, полученное сплавлением или спеканием двух или более компонентов. Способы получения одно­родной монолитной массы сплава могут быть различными: кристал­лизация из

Не растворяются друг в друге в твердом состоянии
Сплавы, затвердевающие в соответствии с данной диаграммой, характеризуются тем, что их компоненты: - в жидком состоянии растворяются друг в друге в любых со­отношениях; - в твердо

В твердом состоянии
Неограниченные твердые растворы замещения в твердом состоянии обра­зуют компоненты с однотипной кристаллической решеткой, имеющие небольшую разницу в параметрах решетки и близкие по физическим свой

Диаграмма состояния сплавов с ограниченной растворимостью компонентов друг в друге в твердом состоянии
Сплавы, затвердевающие в соответствии с диаграммой состо­яния ограниченных твердых растворов, характеризуются тем, что в жидком состоянии компоненты растворяются друг в друге неогра­ниченно, а в тв

Влияние углерода на строение и свойства сталей
Сталями называются сплавы железа с углеродом, содержащие углерода до 2,14%. Углерод является важнейшим элементом, определяющим как структуру, так и свойства углеродистых сталей, ее прочнос

Структура, свойства и применение чугунов
Сплавы железа с углеродом с содержанием углерода более 2,14% называются чугунами. В зависимости от условий кристаллизации и последующей об­работки углерод в чугунах может находиться в виде

Влияние легирования на структуру и свойства сталей
Легирующие элементы вводятся в стали для улучшения их меха­нических свойств. Путем легирования добиваются повышения прочности, вязкости, прокаливаемости, снижения порога хладноломкости, получают ко

По сравнению с углеродистыми
Нагревание легированных сталей протекает медленнее, макси­мальная температура выбирается выше, время выдержки при этой температуре больше. Это объясняется тем, что карбидообразущие легирующи

Влияние легирования на прокаливаемость сталей
Под прокаливаемостью понимают способность стали получать закаленный слой с мартенситной или троостито-мартенситной струк­турой и высокой твердостью и прочностью на ту или иную глубину. Почем

В титане
a-стабилизаторы – Al, Ga, La, Ge, C, N, O – повышают температуру полиморфного превращения a«b и расширяют температурную область существования a-фазы (рис. 9.1, I). Для упрочнения как однофаз

В равновесном состоянии. Особенности применения сплавов
a-сплавы ВТ1-00; ВТ1-0; ВТ1; ВТ5; ВТ5-1; ВТ18 и другие об­ладают высокой термической стабильностью, сопротивляемостью коррозии и газонасыщению поверхностного слоя до температуры 600°С, хорош

При закалке и старении
Закалкой и старением упрочняются двухфазные (a+b)-ти­тановые сплавы. Схема образования структур при закалке и старе­нии показана на рис. 9.2.

Превращения в сплавах при закалке
При закалке из b-области ряд сплавов будет претерпевать мартенситное превращение. На диаграмме нанесены линии начала ( Мн ) и конца (Мк ) мартенситного превращения. В

Превращения в закаленных сплавах при старении
При старении происходят фазовые превращения диффузионного характера, связанные с превращением закалочных фаз a¢(a¢¢), bн и w. Конечный продукт превращения - стабильная (a+

Дуралюмина Д1, х150
Зерна твердого раствора и кристаллы CuAl2 по их границам        

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги