рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Механизм пластической деформации монокристаллов

Механизм пластической деформации монокристаллов - Лабораторная Работа, раздел Механика, Определение механических свойств конструкционных материалов путем испытания их на растяжение Межатомные Силы В Кристаллических Телах Складываются Из Электростатических Си...

Межатомные силы в кристаллических телах складываются из электростатических сил притяжения и отталкивания. Равнодействующая этих сил на некотором межатомном расстоянии равна нулю.

При сближении атомов (ионов) возрастают силы отталкивания, а при удалении появляются силы притяжения. Соотношение этих сил и определяет упругость и пластичность тела при воздействии на него внешних усилий.

Основное свойство упругой деформации состоит в том, что после снятия нагрузки деформация исчезает, т.е. деформированное тело восстанавливает свою форму и размеры. Пластическая деформация является остаточной, если после снятия нагрузки форма и размеры тела не восстанавливаются. Можно говорить, что в области упругих деформаций кристалл «помнит» свои размеры и форму, а в области пластических деформаций такая «память» нарушается.

В монокристалле под воздействием внешних усилий пластическая

деформация осуществляется методом скольжения или двойникования

(рис. 4.1).

 

рис. 4.1. Схема пластического сдвига в идеальной кристаллической решетке:

а, б, в – скольжение; АА – плоскость скольжения; г – двойникование;

ББ – плоскость двойникования

 

Деформация металлов путем скольжения (рис. 4.1, а – в) наблюдается наиболее часто. При скольжении происходит многократный сдвиг одной части кристаллической решетки относительно другой на один параметр решетки вдоль плоскости скольжения АА или вдоль других плоскостей, параллельных данной плоскости. Скольжение происходит вдоль плоскостей, наиболее плотно упакованных ионами. Смещение атомов по плоскостям скольжения в процессе пластической деформации проявляется в виде линий скольжения, которые наблюдаются под микроскопом. Чем больше степень деформации, тем гуще располагаются линии скольжения. При больших деформациях они почти сливаются. Видимая при малом увеличении линия скольжения в действительности представляет собой целую группу линий, расположенных друг от друга на малых расстояниях. Если скольжение происходит по нескольким системам одновременно, то на микрошлифе выявляются сетки из линий скольжения.

При двойниковании происходит поворот одной части кристаллической решетки относительно другой на некоторый угол a, отсчитываемый от плоскости двойникования ББ.

Двойникование наблюдается значительно реже, чем скольжение. Деформация двойникованием обычно происходит при низких тем­пературах и при больших скоростях деформирования, когда скольже­ние затруднено. В этом случае наблюдается поворот определенных частей кристалла в плоскости деформации, так что кристаллическая решетка становится зеркальным отражением решетки соседних недеформированных областей (рис. 4.1, г). В кристалле возникают двойниковые полосы (двойники). В пределах одного зерна может быть несколько двойников.

Первую оценку сопротивления идеального кристалла пластическому деформированию дал Я.И. Френкель. Он рассмотрел две кристаллографические плоскости, которые сдвигаются одна относительно другой в кристалле на один параметр решетки, и определил критическое напряжение сдвига tкр, возникающее в плоскости скольжения:

,

где G = - модуль сдвига; Е - модуль Юнга;

p - постоянная, появление которой объясняется периодичностью функции sin, используемой при выводе формулы.

Расчеты по формуле Френкеля, выполненные для монокристаллов различных металлов, дают результаты, на несколько порядков отличающиеся от экспериментальных. Например, по формуле Френкеля для монокристалла железа tкр = 11000 МПа (реально 29 МПа), для монокристалла алюминия

tкр = 4300 МПа (реально 10…15 МПа) и т.д.

Выход из этого противоречия был найден путем замены модели жесткого сдвига моделью перемещения вдоль плоскости скольжения особых геометрических дефектов кристаллической решетки – дислокаций.

Дислокации представляют собой линейные дефекты кристаллического строения металлов, имеющие место вдоль края незавершенной плоскости (краевая дислокация) (рис 4.2, а) или вдоль линии сдвига одной части кристалла относительно другой (винтовая дислокация) (рис 4.2, б).

В дислокационной теории пластической деформации приняты следующие допущения:

1) скольжение распространяется по плоскости сдвига последовательно, а не одновременно;

2) скольжение начинается от мест нарушения кристаллической решетки, которые должны быть или возникать в металле (кристалле) при его нагружении.

а б

 

Рис. 4.2. Краевая дислокация вдоль линии ВС (а)

и винтовая дислокация вдоль линии ВС (б)

 

Дислокационная теория пластической деформации подробно рассматривается в металлофизике и на сегодняшний день эта теория хорошо согласуется с экспериментальными данными.

Таким образом, пластический сдвиг вдоль плоскости скольжения в монокристалле происходит благодаря наличию в ней дислокаций - линейных либо винтовых.

Рассмотрим механизм пластической деформации на примере перемещения в кристалле линейной или краевой дислокации (при перемещении винтовых и других дислокаций явления аналогичны). Пусть в кристалле (рис. 4.3) имеется линейная дислокация (перпендикулярная плоскости сечения кристалла) на краю незавершенной плоскости (в районе точки Q).

Под действием сдвигающих напряжений t атомы незавершенной плоскости I сдвинутся влево. Верхняя часть целой плоскости II тоже сместится влево. В определенный момент происходит разрыв целой плоскости II по горизонтальной плоскости А-А и плоскость I объединяется с нижней частью плоскости II, образуя целую плоскость (показано штриховой ли­нией). Верхняя часть бывшей целой плоскости II становится не­завершенной Р¢Q¢ (показана штриховой линией), и дислокация будет расположена уже на ее крае. Таким образом, дислокация переместилась на одно межатомное расстояние влево.

Под действием касательных напряжений дислокация будет последовательно перемещаться в плоскости скольжения, пока не вый­дет на поверхность кристалла. В результате про­изойдет сдвиг в кристалле по плоскости скольжения на одно меж­атомное расстояние, хотя все атомы в этой плоскости не переме­щались одновременно.

Таким образом, для того чтобы получить элементарный сдвиг, необходимо переместить дислокацию на край монокристалла или зерна.

 

Рис. 4.3. Схема перемещения краевой дислокации, находящейся на нижнем крае незавершенной плоскости РQ (в районе точки Q), на одно

межатомное расстояние влево (в положение Q¢)

 

Для получения реальных конечных сдвигов надо переместить множество дислокаций, которые должны быть в металлах или должны образовываться в них в процессе деформации.

Дислокации образуются разными способами:

1) при кристаллизации металлов (чаще винтовые дислокации);

2) при срастании в процессе кристаллизации отдельных кристаллитов;

3) за счет перерождения колоний вакансий в дислокации;

4) в процессе пластического деформирования благодаря источникам Франка-Рида.

Из всех способов зарождения дислокаций самым важным является последний, поскольку в этом случае возникает такое количество дислокаций, которое может обеспечить реальную макроскопическую пластическую деформацию.

Если обозначить общую длину всех линий дислокаций в объеме монокристалла через L и отнести ее к этому объему, то плотность дислокаций определится соотношением

[см/см3, 1/см2, см-2].

Для отожженных металлов плотность дислокаций составляет 106…108 см–2, а в процессе пластического деформирования плотность дислокаций увеличивается до значений 1011…1012 см–2; именно такая плотность дислокаций и обеспечивает пластическую деформацию, реально наблюдаемую на практике. Если плотность дислокаций повышается до значений 1013…1014 см–2, то пластическое деформирование заканчивается разрушением кристалла.

В зависимости от расположения относительно плоскости скольжения дислокации условно подразделяются на положительные и отрицательные. Находясь в одной плоскости скольжения, дислокации взаимодействуют между собой. Подобно электрическим зарядам в электростатике дислокации одного знака отталкиваются, а разных - притягиваются. Взаимодействие дислокаций влияет на пластичность монокристалла. Если дислокации в монокристалле отсутствуют, то пластическое деформирование может реализоваться только по механизму жесткого сдвига и тогда критические сдвигающие напряжения определяют по формуле Френкеля, что хорошо согласуется с экспериментальными данными.

Пластическая деформация начинается при напряжениях, равных пределу текучести. При этом в монокристаллах наблюдается перемещение имеющихся в них дислокаций. В процессе деформации появляются новые дислокации (существуют и работают источники дислокаций Франка-Рида). Дислокации могут пересекаться друг с другом и блокировать пластическую деформацию.

Пластическая деформация поликристалла

Реальный металл состоит из большого количества зерен, различно ориентированных относительно друг друга. Рассмотренный механизм пластической деформации приемлем для отдельно взятого зерна, в котором искажения кристаллической решетки определяются только наличием дислокаций и других дефектов.

Металлы технической чистоты содержат большое количество примесей, которые в кристаллической решетке основного металла могут находиться либо в атомарном состоянии, либо в виде частиц второй фазы с собственной кристаллической структурой. Кроме того, поликристаллическое строение реальных металлов обуславливает большое количество поверхностных дефектов на границах зерен, наличие которых также влияет на подвижность дислокаций, а следовательно, и пластичность металла.

Кратко рассмотрим влияние основных типов дефектов, встречающихся в реальном металле, на его прочностные и пластические свойства.

Если в плоскости скольжения имеются атомы другого вещества, то они вовлекаются дислокацией в движение, на что затрачивается энергия движущейся дислокации, которая будет постепенно терять свою подвижность, если примесных атомов будет достаточно много. Если в плоскости скольжения находятся инородные включения второй фазы со своей собственной кристаллической структурой, то движущаяся дислокация может их только обогнуть, что также требует энергетических затрат, приводящих к потере дислокациями подвижности. Границы зерен являются непреодолимыми препятствиями для движущихся дислокаций.

Все факторы, затрудняющие перемещение дислокаций, будут повышать предел текучести и приближать его к пределу прочности, т.е. они могут рассматриваться как упрочняющие факторы.

Увеличение сопротивления металла перемещению дислокаций зависит от следующих факторов:

а) поворота плоскостей скольжения относительно действующей силы. При этом плоскости скольжения стремятся расположиться па­раллельно главному направлению деформации, т.е. угол между дей­ствующей силой и плоскостью скольжения постепенно уменьшается, а напряжение в плоскости скольжения достигает своего критичес­кого значения при большем усилии. Таким образом, некоторая до­ля упрочнения за счет деформации объясняется геометрией самой деформации;

б) увеличения плотности дислокаций, что приводит к значи­тельным искажениям пространственной кристаллической решетки. Они возникают при взаимодействии дислокаций друг с другом (их пересечении) и с другими дефектами кристаллической решетки;

в) торможения дислокаций на препятствиях: границах блоков, двойников, зерен, включениях других фаз. Так как в различных зер­нах реальных металлов ориентировка кристаллографических плоскос­тей различна, то границы зерен являются непреодолимой преградой для дислокаций. Скапливаясь на границе зерен, дислокации созда­ют большие внутренние напряжения, которые приводят в движение дислокации в соседних зернах. Таким образом, через границу зе­рен перемещение дислокаций передается эстафетным путем;

г) влияния примесей, мелкодисперсных фаз и атомов легирующих элементов.

Упрочнение металлов и сплавов при пластической деформации приводит к исчерпанию пластичности металла и ограничивает возможности получения сложных деталей за один технологический переход. С другой стороны, с помощью наклепа можно повысить конструкционную прочность практически всех существующих металлов и сплавов.

Общее остаточное формоизменение поликристаллического металла включает в себя пластическую деформацию зерен, изменение их формы и размеров и их относительное смещение. В соответствии с этим различают внутрикристаллитную и межкристаллитную деформации поликристалла.

Внутрикристаллитная деформация отдельных зерен поликристалла осуществляется скольжением (иногда двойникованием), как и в случае монокристалла. Разная кристаллографическая ориентировка плоскостей скольжения отдельных зерен в пространстве приводит к тому, что при нагружении поликристаллического тела внешними силами скольжение дислокаций начинается только в благоприятно ориентированных по отношению к внешним силам зернах. Остальные зерна деформируются упруго.

Межкристаллитная деформация заключается в относительном смещении зерен относительно друг друга. При этом на соотношение между внутрикристаллитной и межкристаллитной деформациями поликристалла оказывает влияние различие свойств металла внутри зерен и по их границам, которое становится значительным при достаточно высоких температурах. Если деформация поликристаллического металла осуществляется в холодном состоянии, то все особенности такой пластической деформации можно объяснить только различной кристаллографической ориентацией зерен в пространстве относительно внешних деформирующих сил.

Кратко рассмотрим эти особенности.

1. Нарушается линейная зависимость между напряжениями и деформациями при нагружении выше предела пропорциональности, так как упругая составляющая деформации в зернах с благоприятной ориентировкой плоскостей скольжения относительно деформирующих сил и напряжений (в «слабых» зернах) меньше, чем в остальных («сильных»). «Слабые» зерна раньше начинают пластически деформироваться. «Сильные» зерна в это время продолжают деформироваться упруго. Это является причиной отклонения от закона Гука, появления внутренних напряжений (второго рода) при прекращении деформации при малых ее степенях, особого поведения деформированного металла при последующем нагреве (см. «Критическая степень деформации»).

2. Имеет место упругое последействие, суть которого состоит в том, что образец под постоянной нагрузкой, не превышающей предела текучести, с течением времени дополнительно деформируется и после снятия нагрузки получает некоторую остаточную деформацию, которая со временем уменьшается либо совсем исчезает. Под нагрузкой в благоприятно ориентированных зернах имеет место некоторая пластическая деформация, что и является причиной появления некоторой остаточной деформации на всем образце в целом. После снятия внешней нагрузки зерна с большой степенью упругой деформации, стремясь вернуться в исходное, недеформированное состояние, вызывают в пластически деформированных зернах деформацию обратного знака, обусловливающую уменьшение или полное исчезновение остаточной деформации в образце.

3. Происходит релаксация напряжений, т.е. уменьшение с течением времени уровня напряжений, соответствующих заданной величине упругой деформации. Причина все та же - в отдельных благоприятно ориентированных зернах имеет место незначительная по величине пластическая деформация, не влияющая на величину упругой деформации всего образца, но заметно уменьшающая общий уровень напряжений.

4. Наблюдается упругий гистерезис, когда линия нагружения на графике изменения усилия по деформации не совпадает с линией разгрузки, образуя петлю гистерезиса, площадь которой характеризует количество тепла, выделившегося при деформации образца. При нагрузке образца в благоприятно ориентированных зернах возникает некоторая пластическая деформация, которая проходит в обратном направлении после снятия нагрузки под воздействием упругодеформированных зерен, восстанавливающих свои исходные размеры и форму. Энергия, затраченная на пластическую деформацию при прямом и обратном нагружениях, эквивалентна теплоте, рассеянной в окружающее пространство. Именно эта энергия и характеризуется площадью петли гистерезиса, которая отсутствует при наличии только упругой деформации.

5. Наблюдается эффект Баушингера, который заключается в том, что в образце, деформированном за предел текучести, уменьшается сопротивление деформированию при последующей деформации обратного знака. Объясняется это явление следующим образом. Чтобы имела место даже незначительная пластическая деформация, необходимо осуществить упругую предварительную деформацию. После снятия нагрузки при прямом нагружении под воздействием упругодеформированных (до предельной величины) зерен, которые стремятся принять свои исходные размеры и форму, в соседних с ними зернах происходит упругая деформация обратного знака. И поэтому при приложении внешней нагрузки того же знака пластическая деформация в них начнется при меньшем уровне напряжений, в итоге снижается сопротивление деформированию. Таким образом, в предварительно растянутом образце деформация сжатия начнется при более низких напряжениях, чем при первоначальном растяжении.

 

Пластическая деформация и упрочнение металла

Пластическая деформация вызывает в металле структурные изменения, которые условно можно разделить на три группы: 1) изменение формы и размеров зерен; 2) изменение кристаллографической и пространственной ориентировки зерен; 3) изменение внутреннего строения каждого зерна. В результате пластической деформации в деформированном металле резко возрастает плотность дислокаций и других дефектов кристаллической решетки, в результате чего увеличивается потенциальная энергия металла.

С термодинамической точки зрения система «деформированный металл» находится в термодинамически нестабильном состоянии, поскольку имеет повышенный уровень энергии. По второму закону термодинамики такая система будет стремиться уменьшить свою энергию и вернуться к состоянию устойчивого равновесия.

Если в процессе пластической деформации отсутствуют благоприятные условия для процессов диффузии, стремящихся перевести деформированный металл в равновесное состояние с минимальным уровнем потенциальной энергии, то наблюдается холодная пластическая деформация, которая сопровождается наклепом металла.

Наклеп, или нагартовка - это совокупность структурных изменений, приводящих к изменению механических, физических и химических свойств пластически деформированного металла. В обработке металлов давлением укоренилось определение «наклепа» как повышение прочности и твердости деформированного металла при одновременном снижении пластичности. Это упрочнение является следствием тех структурных изменений, которые возникают в металле при его пластической деформации.

При разгрузке поликристалла после пластического формоизменения наблюдаются сложные явления. Наиболее существенным из них является возникновение остаточных напряжений, которые подразделяются (условно) на три рода.

Напряжения первого рода - остаточные напряжения, которые образуются силами, уравновешивающимися между отдельными частями твердого тела.

Напряжения второго рода образуются силами, уравновешивающимися между отдельными зернами поликристалла.

Упругая составляющая деформации в зернах с благоприятной ориентировкой плоскостей скольжения («слабых») меньше, чем в остальных («сильных»). При разгрузке упругое изменение размеров «сильных» зерен должно быть больше, чем «слабых», но изменения размеров тех и других зерен одинаковы вследствие полного восстановления размеров «сильных» и деформирования другого знака «слабых» зерен, что и обуславливает возникновение напряжений второго рода.

Напряжения третьего рода образуются между отдельными группами атомов (например между дислокациями).

Явление наклепа проявляется также в изменении физико-химических свойств деформированных металлов и сплавов. Например, при холодной пластической деформации ухудшаются теплопроводность и электропроводность, изменяются магнитные свойства ферромагнитных металлов и сплавов.

При холодной пластической деформации повышается химическая активность металла и снижается его коррозионная стойкость. Модуль упругости при наклепе металла изменяется незначительно, и обычно этим изменением пренебрегают. Холодная пластическая деформация обуславливает анизотропию механических свойств за счет образования волокнистой структуры (ориентация межзеренного вещества вдоль направления действия деформирующей силы) и текстуры деформации (преимущественная кристаллографическая ориентация зерен вдоль направления действия деформирующей силы) (рис. 4.4).

 

 

Рис. 4.4. Сталь марки 08. Волокнистое строение (текстура), х150

 

Таким образом, после холодной пластической деформации деформированный металл находится в термодинамически нестабильном состоянии и поэтому самопроизвольно стремится перейти в равновесное состояние.

 

– Конец работы –

Эта тема принадлежит разделу:

Определение механических свойств конструкционных материалов путем испытания их на растяжение

Содержание.. введение и методические рекомендации лабораторная работа определение механических..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Механизм пластической деформации монокристаллов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Предел упругости s0,05 , как и предел пропорциональности, определяется расчетным или графическим способом.
Точно так же определяется и модуль упругости Е, МПа (кгс/мм2): . (1.2)  

Порядок выполнения работы
1. Измерить диаметр испытуемых образцов; вычислить площадь F0 образцов; полученные результаты занести в табл. 1.2. 2. Занести в табл. 1.3 параметры машины. 3. Разорвать

Метод Бринелля
Метод измерения твердости металлов и сплавов по Бринеллю регламентируется ГОСТ 9012-59 (СТ СЭВ 468-77). Сущность метода заключается во вдавливании стального закаленного шарика диаметром 2,

Метод Роквелла
Измерение твердости металлов и сплавов по методу Роквелла осуществляется вдавливанием алмазного конуса или стального шарика с последующим определением твердости по глубине получаемого отпечатка (ГО

Порядок выполнения работы
1. Проверить соответствие образцов требованиям. 2. По табл. 2.4 выбрать шкалу, нагрузку и вид наконечника. 3. Включить прибор тумблером 8 (см. рис. 2.5), при этом должна загоретьс

Микроструктурный анализ металлов и сплавов
Микроструктурный анализ заключается в исследовании строения (структуры) металлов и сплавов с помощью оптических металлографических микроскопов с увеличением от 50 до 1500 раз или с помощью э

Объективов и окуляров микроскопа МИМ-7
      Объективы На матовом стекле При визуальном наблюдении Окуляры 7

Вспомогательные устройства микроскопа
При проведении количественных исследований (определение величины зерна, глубины цементированного слоя и др.) пользуются окулярными вкладышами. Это стеклянные пластинки, на которые нанесены шкала, п

И сплавов
При нагреве пластически деформированные металлы постепенно восстанавливают свою структуру и свойства и переходят в устойчивое состояние. Этот переход можно разбить на две стадии: возврат и рекриста

Некоторые положения теории сплавов
Сплавом называется вещество, полученное сплавлением или спеканием двух или более компонентов. Способы получения одно­родной монолитной массы сплава могут быть различными: кристал­лизация из

Не растворяются друг в друге в твердом состоянии
Сплавы, затвердевающие в соответствии с данной диаграммой, характеризуются тем, что их компоненты: - в жидком состоянии растворяются друг в друге в любых со­отношениях; - в твердо

В твердом состоянии
Неограниченные твердые растворы замещения в твердом состоянии обра­зуют компоненты с однотипной кристаллической решеткой, имеющие небольшую разницу в параметрах решетки и близкие по физическим свой

Диаграмма состояния сплавов с ограниченной растворимостью компонентов друг в друге в твердом состоянии
Сплавы, затвердевающие в соответствии с диаграммой состо­яния ограниченных твердых растворов, характеризуются тем, что в жидком состоянии компоненты растворяются друг в друге неогра­ниченно, а в тв

Теоретические сведения
К железоуглеродистым сплавам относят стали (содержание углерода - до 2,14%) и чугуны (содержание углерода - свыше 2,14%), которые по масштабу и многообразию своего применения имеют важное значение

Влияние углерода на строение и свойства сталей
Сталями называются сплавы железа с углеродом, содержащие углерода до 2,14%. Углерод является важнейшим элементом, определяющим как структуру, так и свойства углеродистых сталей, ее прочнос

Структура, свойства и применение чугунов
Сплавы железа с углеродом с содержанием углерода более 2,14% называются чугунами. В зависимости от условий кристаллизации и последующей об­работки углерод в чугунах может находиться в виде

Влияние легирования на структуру и свойства сталей
Легирующие элементы вводятся в стали для улучшения их меха­нических свойств. Путем легирования добиваются повышения прочности, вязкости, прокаливаемости, снижения порога хладноломкости, получают ко

По сравнению с углеродистыми
Нагревание легированных сталей протекает медленнее, макси­мальная температура выбирается выше, время выдержки при этой температуре больше. Это объясняется тем, что карбидообразущие легирующи

Влияние легирования на прокаливаемость сталей
Под прокаливаемостью понимают способность стали получать закаленный слой с мартенситной или троостито-мартенситной струк­турой и высокой твердостью и прочностью на ту или иную глубину. Почем

В титане
a-стабилизаторы – Al, Ga, La, Ge, C, N, O – повышают температуру полиморфного превращения a«b и расширяют температурную область существования a-фазы (рис. 9.1, I). Для упрочнения как однофаз

В равновесном состоянии. Особенности применения сплавов
a-сплавы ВТ1-00; ВТ1-0; ВТ1; ВТ5; ВТ5-1; ВТ18 и другие об­ладают высокой термической стабильностью, сопротивляемостью коррозии и газонасыщению поверхностного слоя до температуры 600°С, хорош

При закалке и старении
Закалкой и старением упрочняются двухфазные (a+b)-ти­тановые сплавы. Схема образования структур при закалке и старе­нии показана на рис. 9.2.

Превращения в сплавах при закалке
При закалке из b-области ряд сплавов будет претерпевать мартенситное превращение. На диаграмме нанесены линии начала ( Мн ) и конца (Мк ) мартенситного превращения. В

Превращения в закаленных сплавах при старении
При старении происходят фазовые превращения диффузионного характера, связанные с превращением закалочных фаз a¢(a¢¢), bн и w. Конечный продукт превращения - стабильная (a+

Дуралюмина Д1, х150.
Зерна твердого раствора и кристаллы CuAl2 по их границам        

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги