рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Применение второго закона термодинамики к фазовым превращениям.

Применение второго закона термодинамики к фазовым превращениям. - раздел Химия, Термодинамика и законы разбавленных растворов. Понижение давления пара растворителя над раствором. Закон Рауля Процессы Перехода Системы Из Одной Фазы В Другую Называется Фа...

Процессы перехода системы из одной фазы в другую называется фазовыми превращениями. К ним относятся процессы плавления, кристаллизации, испарения, кипения, конденсации, сублимации (возгонки) и полиморфные превращения.

Температура фазового превращения не зависит от количества равновесных фаз и является величиной постоянной (Т = const). Зависимость температуры фазового перехода от давления была установлена Клапейроном (1834 г.) и обоснована Клаузиусом (1850 г.).

Дифференциальная форма уравнения Клапейрона-Клаузиуса имеет вид:

,

где Н ф.пр. - теплота (энтальпия) фазового превращения, Дж/моль; Т ф.пр. - температура фазового превращения; V1, V2 - объёмы разных фаз.

Уравнения Клапейрона-Клаузиуса для частных случаев фазовых превращении:

1) Для процессов испарения и конденсации:

,

где DНисп.- теплота испарения , Дж/моль; Vп - объём пара, л.; Vж - объём жидкости, л. ; Ткип - температура кипения, град.

2) Для процесса плавления и кристаллизации:

,

где Нпл.- скрытая теплота плавления, Дж/моль; Vтв- объём твердого тела , л.; Тпл.- температура плавления, град ;

3) Для процесса (сублимации) возгонки:

.

где Нсубл. - теплота возгонки, Дж/моль; Тсубл. - температура сублимации, град.

4) Для процесса полиморфного превращения:

,

где DНa®b - теплота полиморфного превращения, Дж/моль;

Тa®b - температура полиморфного превращения, град.

– Конец работы –

Эта тема принадлежит разделу:

Термодинамика и законы разбавленных растворов. Понижение давления пара растворителя над раствором. Закон Рауля

Первой закон термодинамики основные формулировки и математическое выражение первого закона термодинамики Применение его к термодинамическим... Теплоемкость Виды теплоемкости Связь между средней и истинной... Закон Гесса и следствия из него Применение первого закона термодинамики к химическим процессам Связь между qp и...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Применение второго закона термодинамики к фазовым превращениям.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Работа расширения идеальных газов
Идеальный газ – это газ для идеализированной системы, состоящей из частиц, собственный объем которых мал по сравнению со всем объемом системы, и которые находятся в непрерывном хаотическом д

Работа расширения идеального газа.
Учитывая выведенное раннее разделение полной работы процесса на работу расширения и полезную работу (см. 1.6 и 1.10), математическое выражение первого закона термодинамики (2.3) можно представить в

Теплоемкость
Теплоемкостью называется количество теплоты, необходимое для нагревания данной массы вещества на один градус. Различают удельную и мольную теплоемко

Теплоемкость при постоянном давлении и объеме и связь между ними.
Теплоёмкость не является функцией состояния, она определяется характером процесса. В зависимости от условий проведения процесса различают изохорную (Сv) и изобарную (Ср) теплоёмкости.

Температурная зависимость теплоемкости от температуры.
Температура значительно влияет на величину теплоёмкости и это влияние различно в различных температурных интервалах. Температурную теплоёмкость можно схематично рассмотреть на графике.

Закон Гесса
В 1836 г. Г. И. Гесс открыл основной закон термохимии, который является частным случаем первого закона термодинамики применительно к химическим реакциям, протекающим в изохорных или изобарных услов

Применение первого закона термодинамики к химическим процессам.
С + О2 СО + ½ О2 СО2

Зависимость теплового эффекта от температуры.
Рассмотрим зависимость теплоты процесса от температуры. Для этого возьмем частные производные от приращения функций из уравнений теплоемкости и : ; , где , - изменение теплоемкост

Обратимые и необратимые процессы
Все процессы, в которых один вид энергии преобразуется в другой, строго подчиняются первому закону термодинамики. Однако этот закон ничего не говорит о направлении процесса. Так первому закону не п

Второй закон термодинамики, его формулировки
Все процессы, происходящие в окружающем нас мире, можно разделить на три группы: · процессы, для совершение которых требуется затрата работы извне; · процессы, для совершения кото

Цикл Карно
Сущность ограничений, налагаемых вторым законом на превращение теплоты в работу, можно пояснить на примере действия идеальной машины (машина работает без трения и без потерь тепла, а под рабочим те

Энтропия как мера неупорядоченности системы.
Энтропия (S) – это мера неупорядоченности движения материи или мера деградации (рассеянности) энергии. Всякая система со временем переходит из неравновесного состоя

Расчет изменения энтропии при различных термодинамических процессах и при протекании химических реакций.
1) Изохорический процесс V=const ->       Получаем: ,   Если ν≠1 моль, то

Свободная и связанная энергия.
Свободная энергия Гиббса (G)есть та работа, которую могло бы совершить тело в обратимом изотермическом процессе, или свободная энергия есть максимальная

Основные соотношения между термодинамическими функциями. Уравнение Гиббса-Гельмгольца.
Соответствующие дифференциалы термодинамических потенциалов: · для внутренней энергии , · для энтальпии   · для свободной энергии Гельмгольца

Вывод дифференциальной формы уравнения Клаузиуса - Клапейрона для процесса кипения.
Рассмотрим процесс фазового превращения на примере кипения жидкости. Испарение- это фазовый переход на границе раздела жидкость пар или жидкости

Интегрирование уравнения Клаузиуса - Клапейрона и его анализ.
Интегрирование уравнения Клапейрона-Клаузиуса в пределах температур Т1 и Т2,которым соответствуют давления P1 иP2пр

Признаки равновесных состояний.
Истинное химическое равновесие характеризуется следующими признаками: 1) В момент равновесия скорости прямой и обратной реакции равны, а концентрации всех участников реакции остаются неизм

Закон действующих масс. Вывод константы равновесия для гомогенной реакции.
Многие химические реакции, в зависимости от условий, могут термодинамически протекать самопроизвольно как в прямом так и в обратном направлении. Состав равновесной реакционной смеси характеризуется

Связь между различными формами выражения констант равновесия.
Константа химического равновесия может быть выражена различными способами. Если Кравн выражается через равновесные концентрации, то она обозначается Кс и рассчитывается по ура

Химическое равновесие в гетерогенных системах. Расчет константы равновесия.
При выводе закона действующих масс для гомогенных химических реакций предполагается, что все участники реакции находятся в газообразном состоянии. Если система гетерогенная, то ест

Химическое сродство как мера реакционноспособности системы. Изотерма Вант-Гоффа.
Способность различных веществ взаимодействовать между собой с образованием новых веществ была замечена давно и сначала называлась реакционноспособностью веществ, а позже получила н

Нормальное химическое сродство.
Для того, чтобы можно было сравнивать сродство различных веществ, было введено понятие нормального химического сродства. К уравнению нормального химического сродства легко перейти

Расчет химического равновесия с помощью таблиц стандартных термодинамических величин
В настоящее время при расчетах химических равновесий широко используют таблицы термодинамических величин, где приведены вычисленные с большой точностью термодинамические характерис

Термодинамика и законы разбавленных растворов. Понижение давления пара растворителя над раствором. Закон Рауля.
Среди растворов особенно интересны такие, для которых во всей области концентраций соблюдается простейшая линейная зависимость парциальных и общего давлений пара от концентрации. Если концентрацию

Растворимость газов в жидкостях. Закон Генри. Зависимость растворимости газов от различных факторов.
Зависимость растворимости газов в жидкости определяется законом Генри: «Растворимость газа в жидкости прямо пропорциональна парциальному давлению газа при постоянно

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги