Типы межмолекулярных взаимодействий - раздел Химия, По дисциплине Химия КУРС ЛЕКЦИЙ Связи, При Образовании Которых Перестройка Электронных Оболочек Не Происходит...
Связи, при образовании которых перестройка электронных оболочек не происходит, называютсявзаимодействием между молекулами. К основным видам взаимодействия молекул следует отнести вандерваальсовы силы, водородные связи и донорно-акцепторное взаимодействие.
При сближении молекул появляется притяжение, что обуславливает возникновение конденсированного состояния вещества (жидкого, твердого с молекулярной кристаллической решеткой). Силы, которые способствуют притяжению молекул, получили название вандерваальсовых. Они характеризуются тремя видами межмолекулярного взаимодействия:
а) ориентационное взаимодействие, которое проявляется между полярными молекулами, стремящимися занять такое положение, при котором их диполи были бы обращены друг к другу разноименными полюсами, а векторы моментов этих диполей были бы ориентированы по одной прямой (по-другому оно называется диполь-дипольное взаимодействие);
б) индукционное, которое возникает между индуцированными диполями, причина образования которых является взаимная поляризация атомов двух сближающихся молекул;
в) дисперсионное, которое возникает в результате взаимодействия микродиполей, образующихся за счет мгновенных смещений положительных и отрицательных зарядов в молекулах при движении электронов и колебаний ядер.
Дисперсионные силы действуют между любыми частицами. Ориентационное и индукционное взаимодействие для частиц многих веществ, например: He, Ar, H2, N2, CH4, не осуществляется. Для молекул NH3 на дисперсионное взаимодействие приходится 50 %, на ориентационное – 44,6 % и на индукционное – 5,4 %. Полярная энергия вандерваальсовых сил притяжения характеризуется невысокими значениями. Так, для льда она составляет 11 кДж/моль, т.е. 2,4 % энергии ковалентной связи H-O (456 кДж/моль). Вандерваальсовы силы притяжения – это физические взаимодействия.
Водородная связь – это физико-химическая связь между водородом одной молекулы и ЭО элементом другой молекулы. Образование водородных связей объясняется тем, что в полярных молекулах или группах поляризованный атом водорода обладает уникальными свойствами: отсутствием внутренних электронных оболочек, значительным сдвигом электронной пары к атому с высокой ЭО и очень малым размером. Поэтому водород способен глубоко внедряться в электронную оболочку соседнего отрицательно поляризованного атома. Как показывают спектральные данные, в образовании водородной связи существенную роль играет также и донорно-акцепторное взаимодействие ЭО атома как донора и атома водорода как акцептора. Водородная связь может быть межмолекулярной или внутримолекулярной.
Водородная связь изображена точками
Для соединений фтора и кислорода характерно образование за счет водородной связи группировок из одинаковых молекул – ассоциатов (H2O)n и (HF)m. Это сказывается на целом ряде свойств соединений, особенно на таких параметрах, как температура кипения (tкип) и замерзания (tзам). По относительной величине молекулярных масс H2O и H2S для воды tкип и tзам должны быть ниже, чем для сульфида водорода (60,75 и -85,60 °С).
В действительности они выше (100 и 0 °С), что связано с увеличением молярной массы воды за счет ассоциации ее молекул. Карбоновые кислоты в жидкой и газовой фазах существуют в основном в виде димеров. В белках, нуклеиновых кислотах и других органических соединениях, имеющих большое биологическое значение, водородная связь обеспечивает «сшивание» цепочечных молекул. Для некоторых соединений возможно также образование внутримолекулярной водородной связи, например в нитрофеноле. Длина водородной связи больше длины ковалентных связей. В ряде соединений типа RA-H…BR’ при сокращении равновесного расстояния Н-В длина связи А-Н увеличивается, и в предельном случае обе связи могут оказаться одинаковыми, как в дифторид-ионе (FHF)-.
Энергия водородной связи (8 - 40 кДж/моль) ниже энергии ковалентной связей. Так, для льда она равна 20 кДж/моль, что составляет 4,3 % энергии ковалентной связи Н-О, равной 456 кДж/моль. Наибольшее значение энергии водородной связи имеют соединения фтора (25 - 40 кДж/моль), затем кислорода (13 - 25 кДж/моль) и азота (8 - 21 кДж/моль). Для серы и хлора образование водородных связей нехарактерно. Энергия водородных связей возрастает с увеличением ЭО элементов и уменьшением размеров атомов. Образование межмолекулярных водородных связей приводит к повышению вязкости, диэлектрической постоянной, температуры кипения и плавления (замерзания), теплот плавления и парообразования, образованию ассоциатов.
Если водородные связи образуются внутри молекул, то понижается вязкость, температура кипения и плавления, эти вещества боле летучи, не образуют ассоциаты, водородные связи внутри молекул приводят к поперечному сливанию цепочечных молекул. Таким образом, водородная связь занимает промежуточное положение между ковалентной и вандерваальсовой силами притяжения.
Донорно-акцепторное взаимодействие, как отмечалось ранее, приводит к образованию ковалентной полярной связи, т.е. относится к химическим видам взаимодействия. Донорно-акцепторное взаимодействие объясняет образование комплексных соединений. Например, при взаимодействии сульфата меди и аммиака образуется сложное соединение:
СuSO4 + 4NH3 = CuSO4.4NH3,
которое выражается формулой [Сu(NH3)4]SO4. Сложные соединения, у которых имеются ковалентные связи, образованные по донорно-акцепторному механизму, получили название комплексных или координационных соединений.
Согласно координационной теории А. Вернера, комплексные соединения состоят из двух сфер: внешней и внутренней. В приведенном выше примере внешней сферой является ион SO42-. Внутренняя сфера называется комплексом, включает центральный ион или атом, который называется комплексообразователем (Cu2+). Вокруг него координируются отрицательно заряженные ионы или нейтральные молекулы (называются лигандами (NH3)). Число лигандов, координируемых комплексообразователем, называют координационным числом.
В зависимости от заряда различают анионные комплексы, например [PF6]-, [Zn(CN)4]2-, [Al(OH)4]-, катионные комплексы, например [Cu(NH3)4]2+, [Ni(CO)4] и [Pt(NH3)2Cl2]. Нейтральные комплексы не имеют внешней сферы. Заряд комплекса численно равен алгебраической сумме заряда центрального иона и заряда лигандов. Например, заряд Z комплекса [Zn(CN)4]2- равен
Z = ZZn2+ + 4ZCN- = 2 + 4(-1) = -2.
Таким образом, имеется обширный класс соединений, называемых комплексными, в которых существуют ковалентные связи, образованные по донорно-акцепторному механизму между центральным атомом или ионом (комплексообразователем-акцептором) и координируемыми им лигандами, имеющими неподеленные пары электронов (донорами).
Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:
Типы межмолекулярных взаимодействий
Что будем делать с полученным материалом:
Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:
Воронеж 2011
Лекция № 1 (2ч)
Введение
Вопросы:
1. Предмет химии. Значение химии в изучении природы и развитии техники.
2. Осно
Основные количественные законы химии
К основным количественным законам химии относятся:закон постоянства состава, закон кратных отношений и закон эквивалентов. Эти законы были открыты в конце XIII – начале XIX веков, и
Современная модель строения атома
В основе современной теории строения атома лежат работы Дж. Томсона (который в 1897 г. открыл электрон, а в 1904 г. предложил модель строения атома, согласно которой атом – это заряженная сфера с в
Орбитальное квантовое число 0 1 2 3 4
Каждому значению l соответствует орбиталь особой формы, например s-орбиталь имеет сферическую форму, р-орбиталь – гантель.
В одной и той же оболочке энергия подуровней возрастает в ряду E
Строение многоэлектронных атомов
Подобно любой системе, атомы стремятся к минимуму энергии. Это достигается при определенном состоянии электронов, т.e. при определенном распределении электронов по орбиталям. Запись
Периодические свойства элементов
Так как электронное строение элементов изменяется периодически, то, соответственно, периодически изменяются и свойства элементов, определяемые их электронным строением, такие как энергия ионизации,
Периодическая система элементов Д.И.Менделеева
В 1869 г. Д. И. Менделеев сообщил об открытии периодического закона, современная формулировка которого следующая: свойство элементов, а также формы и свойства их соединений
Общая характеристика химической связи
Учение о строении вещества объясняет причины многообразия структуры веществ в различных агрегатных состояниях. Современные физические и физико-химические методы позволяют экспериментально определят
Типы химической связи
К основным типам химической связи относят ковалентную (полярную и неполярную), ионную и металлическую связи.
Ковалентной связью называют химическую связь, образованную
Пространственная структура молекул
Пространственная структура молекул зависит от пространственной направленности перекрывания электронных облаков числом атомов в молекуле и числом электронных пар связей за счет непод
Общая характеристика агрегатного состояния вещества
Почти все известные вещества в зависимости от условий находятся в газообразном, жидком, твердом или плазменном состоянии. Это и называется агрегатным состоянием вещества. Аг
Характеристика жидкого состояния вещества
Жидкости по своим свойствам занимают промежуточное положение между газообразными и твердыми телами. Вблизи точки кипения они проявляют сходство с газами: текучи, не имеют определенной формы, аморфн
Общие понятия термодинамики
Термодинамика – наука, изучающая превращения различных форм энергии друг в друга и устанавливающая законы этих превращений. Как самостоятельная дисциплин
Термохимия. Тепловые эффекты химических реакций
Любые химические процессы, а также ряд физических превращений веществ (испарение, конденсация, плавление, полиморфные превращения и др.) всегда сопровождаются изменением запаса внут
Закон Гесса и следствия из него
На основе многочисленных экспериментальных исследований русским академиком Г. И. Гессом был открыт основной закон термохимии (1840 г.) – закон постоянства сумм теплот реа
Принцип работы тепловой машины. КПД системы
Тепловой машинойназывается такое устройство, которое преобразует теплоту в работу. Первая тепловая машина была изобретена в конце XVIII века (паровая). Сейчас существуют дви
Свободная и связанная энергии. Энтропия системы
Известно, что любая форма энергии может полностью преобразовываться в теплоту, но теплота преобразуется в другие виды энергии лишь частично, условно запас внутренней энергии системы
Понятие о химической кинетике
Химической кинетикой называется учение о скорости химических реакций и ее зависимости от различных факторов – природы и концентрации реагирующих веществ, давления,
Теория активизации молекул. Уравнение Аррениуса
Скорость любой химической реакции зависит от числа столкновений реагирующих молекул, так как число столкновения пропорционально концентрациям реагирующих веществ. Однако не все стол
Особенности каталитических реакций. Теории катализа
Скорость химической реакции можно регулировать с помощью катализатора. Вещества, которые участвуют в реакциях и изменяют (чаще всего увеличивают) ее скорость, оставаясь к концу реак
Обратимые и не обратимые реакции. Признаки химического равновесия
Все реакции можно поделить на две группы: обратимые и необратимые. Необратимые реакции сопровождаются выпадением осадка, образованием малодиссоциирующего вещества или выделением газа. Обратимые реа
Константа химического равновесия
Рассмотрим обратимую химическую реакцию общего вида, в которой все вещества находятся в одном агрегатном состоянии, например, жидком:
аA + вB D сC + dD,
где
Правило фаз Гиббса. Диаграмма состояния воды
Качественная характеристика гетерогенных равновесных систем, в которых не происходит химического взаимодействия, а наблюдается лишь переход составных частей системы из одного агрегатного состояния
Правило фаз для воды имеет вид
С = 1+ 2 – Ф = 3 – Ф
если Ф = 1, то С = 2 (система бивариантна)
Ф = 2, то С = 1 (система одновариантна)
Ф = 3, то С = 0 (система безвариантна)
Ф = 4, то С = -1 (
Сольватная (гидратная) теория растворения
Растворами называются гомогенные системы, состоящие из двух или более веществ, состав которых может меняться в довольно широких пределах, допустимых раст
Общие свойства растворов
В конце XIX века Рауль, Вант-Гофф, Аррениус установили весьма важные закономерности, связывающие концентрацию раствора с давлением насыщенного пара растворителя над раствором, темпе
Типы жидких растворов. Растворимость
Способность к образованию жидких растворов выражена в различной степени у различных индивидуальных веществ. Одни вещества способны растворяться неограниченно (вода и спирт), другие – лишь в огранич
Свойства слабых электролитов
При растворении в воде или других растворителях, состоящих из полярных молекул, электролиты подвергаются диссоциации, т.е. в большей или меньшей степени распадаются на положительно и отрицательно з
Свойства сильных электролитов
Электролиты, практически полностью диссоциирующие в водных растворах, называются сильными электролитами. К сильным электролитам относятся большинство солей, которые уже в кр
Свойства коллоидно-дисперсных систем
Все свойства коллоидно-дисперсных систем можно разделить на три основные группы: молекулярно-кинетические, оптические и электрокинетические.
Рассмотрим молекулярно-кинетические
Особенности обменных процессов
Химические реакции разделяются на обменные и окислительно-восстановительные (Ox-Red). Если в реакции не происходит изменение степени окисления, то такие реакции называются обменными. Они возможны п
Особенности окислительно-восстановительных процессов
При окислительно-восстановительных реакциях происходит изменение степени окисления вещества. Реакции можно разделить на те, которые проходят в одном реакционном объеме (например, в
Понятие об электродном потенциале
Рассмотрим процессы, протекающие в гальванических элементов, т. е. процессы превращения химической энергии в электрическую.
Гальваническим элементомназывают электрохим
Гальванический элемент Даниэля-Якоби
Рассмотрим систему, в которой два электрода находятся в растворах собственных ионов, например, гальванический элемент Даниэля-Якоби. Он состоит из двух полуэлементов: из цинковой пластины, погружен
Электродвижущая сила гальванического элемента
Максимальная разность потенциалов электродов, которая может быть получена при работе гальванического элемента, называется электродвижущей силой (ЭДС) элемента.
Поляризация и перенапряжение
При самопроизвольных процессах устанавливается равновесный потенциал электродов. При прохождении электрического тока потенциал электродов изменяется. Изменение потенциала электрода
Электролиз. Законы Фарадея
Электролизом называют процессы, протекающие на электродах под действием электрического тока, подаваемого от внешнего источника тока через электролиты.
При элект
Коррозия металлов
Коррозия – это разрушение металла в результате его физико-химического взаимодействия с окружающей средой. Это процесс самопроизвольный, идущий с уменьшением энергии Гиббса сист
Методы получения полимеров
Полимеры – высокомолекулярные соединения, которые характеризуются молекулярной массой от нескольких тысяч до многих миллионов. Молекулы полимеров, называ
Строение полимеров
Макромолекулы полимеров могут быть линейными, разветвленными и сетчатыми.
Линейные полимеры – это полимеры, которые построены из длинных цепей одномерных элементов, т.
Свойства полимеров
Свойства полимеров условно можно разделить на химические и физические. И те, и другие свойства связаны с особенностями строения полимеров, способом их получения, природой вводимых в
Применение полимеров
На основе полимеров получают волокна, пленки, резины, лаки, клеи, пластмассы и композиционные материалы (композиты).
Волокна получают путем продавливания растворов или
Инструментальные методы анализа
В последние годы все более широкое применение получают инструментальные метода анализа, обладающие многими достоинствами: быстротой, высокой чувствительностью, возможностью одновременного определен
Хотите получать на электронную почту самые свежие новости?
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Новости и инфо для студентов