рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Применение полимеров

Применение полимеров - раздел Химия, По дисциплине Химия. Курс лекций На Основе Полимеров Получают Волокна, Пленки, Резины, Лаки, Клеи, Пластмассы ...

На основе полимеров получают волокна, пленки, резины, лаки, клеи, пластмассы и композиционные материалы (композиты).

Волокна получают путем продавливания растворов или расплавов полимеров через тонкие отверстия (фильеры) в пластине с последующим затвердеванием. К волокнообразующим полимерам относятся полиамиды, полиакрилонитрилы и др.

Полимерные пленки получают из расплавов полимеров методом продавливания через фильеры с щелевидными отверстиями, либо методом нанесения растворов полимеров на движущуюся ленту, либо методом каландрования полимеров. Пленки используют в качестве электроизоляционного и упаковочного материала, основы магнитных лент и т.д.

Каландрование–обработка полимеров на каландрах, состоящих из двух или более валков, расположенных параллельно и вращающихся навстречу друг другу.

Лаки – растворы пленкообразующих веществ в органических растворителях. Кроме полимеров, лаки содержат вещества, повышающие пластичность (пластификаторы), растворимые красители, отвердители и др. Применяются для электроизоляционных покрытий, а также в качестве основы грунтовочного материала и лакокрасочных эмалей.

Клеи – композиции, способные соединять различные материалы вследствие образования прочных связей между их поверхностями и клеевой прослойкой. Синтетические органические клеи составляются на основе мономеров, олигомеров, полимеров или их смесей. В состав композиции входят отвердители, наполнители, пластификаторы и др. Клеи подразделяются на термопластические, термореактивные и резиновые. Термопластические клеи образуют связь с поверхностью в результате затвердевания при охлаждении от температуры текучести до комнатной температуры или испарения растворителя. Термореактивные клеи образуют связь с поверхностью в результате отвердевания (образования поперечных сшивок), резиновые клеи – в результате вулканизации.

Пластмассы – это материалы, содержащие полимер, который при формировании изделия находится в вязкотекучем состоянии, а при его эксплуатации – в стеклообразном. Все пластмассы подразделяются на реактопласты и термопласты. При формовании реактопластов происходит необратимая реакция отвердевания, заключающаяся в образовании сетчатой структуры. К реактопластам относятся материалы на основе фенолоформальдегидных, мочевиноформальдегидных, эпоксидных и других смол. Термопласты способны многократно переходить в вязкотекучее состояние при нагревании и стеклообразное – при охлаждении. К термопластам относятся материалы на основе полиэтилена, политетрафторэтилена, полипропилена, поливинилхлорида, полистирола, полиамидов и других полимеров.

Эластомеры– это полимеры и композиты на их основе, для которых температурный интервал температуры стеклования – температуры текучести достаточно высок и захватывает обычные температуры.

Кроме полимеров в состав пластмасс и эластомеров входят пластификаторы, красители и наполнители. Пластификаторы – например, диоктилфталат, дибутилсебацинат, хлорированный парафин – снижают температуру стеклования и повышают текучесть полимера. Антиоксиданты замедляют деструкцию полимеров. Наполнители улучшают физико-механические свойства полимеров. В качестве наполнителей применяют порошки (графит, сажа, мел, металл и т.д.), бумагу, ткань.

Армирующие волокна и кристаллы могут быть металлическими, полимерными, неорганическими (например, стеклянными, карбидными, нитридными, борными). Армирующие наполнители в значительной степени определяют механические, теплофизические и электрические свойства полимеров. Многие композиционные полимерные материалы по прочности не уступают металлам. Композиты на основе полимеров, армированных стекловолокном (стеклопластики), обладают высокой механической прочностью (прочностью при разрыве 1300–2500 МПа) и хорошими электроизоляционными свойствами. Композиты на основе полимеров, армированных углеродными волокнами (углепластики), сочетают высокую прочность и вибропрочность с повышенной теплопроводностью и химической стойкостью. Боропластики (наполнители – борные волокна) имеют высокую прочность, твердость и низкую ползучесть.

Композиты на основе полимеров используются как конструкционные, электро- и теплоизоляционные, коррозионностойкие, антифрикционные материалы в автомобильной, станкостроительной, электротехнической, авиационной, радиотехнической, горнорудной промышленности, космической технике, химическом машиностроении и строительстве.

Редокситы. Широкое применение получили полимеры с окислительно-восстановительными свойствами – редокситы (с редоксгруппами, или редоксиониты).

Применение полимеров. В настоящее время широко применяется большое число различных полимеров, обладающих различными физическими и химическими свойствами.

Рассмотрим некоторые полимеры и композитов на их основе.

Полиэтилен[-CH2-CH2-]n– термопласт, получаемый методом радикальной полимеризации при температуре до 320 0C и давлении 120-320 МПа (полиэтилен высокого давления) или при давлении до 5 МПа с использованием комплексных катализаторов (полиэтилен низкого давления). Полиэтилен низкого давлений имеет более высокие прочность, плотность, эластичность и температуру размягчения, чем полиэтилен высокого давления. Полиэтилен химически стоек во многих средах, но под действием окислителей стареет. Полиэтилен – хороший диэлектрик, может эксплуатироваться в пределах температур от –20 до +100 0C. Облучение может повысить теплостойкость полимера. Из полиэтилена изготавливают трубы, электротехнические изделия, детали радиоаппаратуры, изоляционные пленки и оболочки кабелей (высокочастотных, телефонных, силовых), пленки, упаковочный материал, заменители стеклотары.

Полипропилен[-CH(CH3)-CH2-]n – кристаллический термопласт, получаемый методом стереоспецифической полимеризации. Обладает более высокой термостойкостью (до 120–140 0C), нежели полиэтилен. Имеет высокую механическую прочность (см. табл. 14.2), стойкость к многократным изгибам и истиранию, эластичен. Применяется для изготовления труб, пленок, аккумуляторных баков и др.

Полистирол– термопласт, получаемый радикальной полимеризацией стирола. Полимер стоек к действию окислителей, но неустойчив к воздействию сильных кислот, он растворяется в ароматических растворителях, обладает высокой механической прочностью и диэлектрическими свойствами и используется как высококачественный электроизоляционный, а также конструкционный и декоративно-отделочный материал в приборостроении, электротехнике, радиотехнике, бытовой технике. Гибкий эластичный полистирол, получаемый вытяжкой в горячем состоянии, применяется для оболочек кабелей и проводов. На основе полистирола также выпускают пенопласты.

Поливинилхлорид [-CH2-CHCl-]n – термопласт, изготовляемый полимеризацией винилхлорида, стоек к воздействию кислот, щелочей и окислителей; растворим в циклогексаноне, тетрагидрофуране, ограничено – в бензоле и ацетоне; трудногорюч, механически прочен; диэлектрические свойства хуже, чем у полиэтилена. Применяется как изоляционный материал, который можно соединять сваркой. Из него изготовляют грампластинки, плащи, трубы и др. предметы.

Политетрафторэтилен (фторопласт) [-CF2-CF2-]n – термопласт, получаемый методом радикальной полимеризации тетрафторэтилена. Обладает исключительной химической стойкостью к кислотам, щелочам и окислителям; прекрасный диэлектрик; имеет очень широкие температурные пределы эксплуатации (от –270 до +260 0C). При 400 0C разлагается с выделением фтора, не смачивается водой. Фторопласт используется как химически стойкий конструкционный материал в химической промышленности. Как лучший диэлектрик применяется в условиях, когда требуется сочетание электроизоляционных свойств с химической стойкостью. Кроме того, его используют для нанесения антифрикционных, гидрофобных и защитных покрытий, покрытий сковородок.

Полиметилметакрилат (плексиглас)

– термопласт, получаемый методом полимеризации метилметакрилата. Механически прочен; стоек к действию кислот; атмосферостоек; растворяется в дихлорэтане, ароматических углеводородах, кетонах, сложных эфирах; бесцветен и оптически прозрачен. Применяется в электротехнике как конструкционный материал, а также как основа для клеев.

Полиамиды– термопласты, содержащие в основной цепи амидогруппу -NHCO-, например, поли-ε-капрон [-NH-(CH2)5-CO-]n, полигексаметиленадипинамид (нейлон) [-NH-(CH2)5-NH-CO-(CH2)4-CO-]n; полидодеканамид [-NH-(CH2)11-CO-]n и др. Их получают как поликонденсацией, так и полимеризацией. Плотность полимеров 1,0÷1,3 г/см3. Характеризуются высокой прочностью, износостойкостью, диэлектрическими свойствами; устойчивы в маслах, бензине, разбавленных кислотах и концентрированных щелочах. Применяются для получения волокон, изоляционных пленок, конструкционных, антифрикционных и электроизоляционных изделий.

Полиуретаны – термопласты, содержащие в основной цепи группы -NH(CO)O-, а также эфирные, карбаматные и др. Получают взаимодействием изоциантов (соединений, содержащих одну или несколько NCO-групп) с полиспиртами, например, с гликолями и глицерином. Устойчивы к действию разбавленных минеральных кислот и щелочей, масел и алифатических углеводородов. Выпускаются в виде пенополиуретанов (поролонов), эластомеров, входят в составы лаков, клеев, герметиков. Используются для тепло- и электроизоляции, в качестве фильтров и упаковочного материала, для изготовления обуви, искусственной кожи, резинотехнических изделий.

Полиэфиры– полимеры с общей формулой НО[-R-О-]nН или [-OC-R-COO-R'-O-]n. Получают либо полимеризацией циклических оксидов, например этиленоксида, лактонов (сложных эфиров оксикислот), либо поликонденсацией гликолей, диэфиров и других соединений. Алифатические полиэфиры устойчивы к действию растворов щелочей, ароматические – также к действию растворов минеральных кислот и солей. Применяются в производстве волокон, лаков и эмалей, пленок, коагулянтов и фотореагентов, компонентов гидравлических жидкостей и др.

Синтетические каучуки (эластомеры) получают эмульсионной или стереоспецифической полимеризацией. При вулканизации превращаются в резину, для которой характерна высокая эластичность. Промышленность выпускает большое число различных синтетических каучуков (CK), свойства которых зависят от типа мономеров. Многие каучуки получают совместной полимеризацией двух и более мономеров. Различают CK общего и специального назначения. К CK общего назначения относят бутадиеновый [-CH2-CH=CH-CH2-]n и бутадиенстирольный [-СН2-СН=СН-СН2-]n- - [-CH2-CH(C6H5)-]n. Резины на их основе используются в изделиях массового назначения (шины, защитные оболочки кабелей и проводов, ленты и т.д.). Из этих каучуков также получают эбонит, широко используемый в электротехнике. Резины, получаемые из CK специального назначения, кроме эластичности, характеризуются некоторыми специальными свойствами, например бензо- и маслостойкостью (бутадиен-нитрильный CK [-CH2-CH=CH-CH2-]n – [-CH2-CH(CN)-]n), бензо-, масло- и теплостойкостью, негорючестью (хлоропреновый CK [-CH2-C(Cl)=CH-CH2-]n), износостойкостью (полиуретановый и др.), тепло-, свето-, озоностойкостью (бутилкаучук) [-С(СН3)2-СН2-]n-[-СН2С(СН3)=СН-CН2-]m. К наиболее применяемым относятся бутадиенстирольный (более 40 %), бутадиеновый (13 %), изопреновый (7 %), хлоропреновый (5 %) каучуки и бутилкаучук (5 %). Основная доля каучуков. (60 - 70 %) идет на производство шин, около 4 % – на изготовление обуви

Кремнийорганические полимеры (силиконы) – содержат атомы кремния в элементарных звеньях макромолекул. Большой вклад в разработку кремнийорганических полимеров внес российский ученый К. А. Андрианов. Характерной особенностью этих полимеров является высокая тепло- и морозостойкость, эластичность; они не стойки к воздействию щелочей и растворяются во многих ароматических и алифатических растворителях. Кремнийорганические полимеры используются для получения лаков, клеев, пластмасс и резины. Кремнийорганические каучуки [-Si(R2)-O-]n, например диметилсилоксановый и метилвинилсилоксановый имеют плотность 0,96 – 0,98 г/см3, температуру стеклования 130 0C. Растворимы в углеводородах, галогеноуглеводородах, эфирах. Вулканизируются с помощью органических пероксидов. Резины могут эксплуатироваться при температуре от -90 до +300 0C, обладают атмосферостойкостью, высокими электроизоляционными свойствами. Применяются для изделий, работающих в условиях большого перепада температур, например для защитных покрытий космических аппаратов и т.д.

Феноло- и аминоформальдегидные смолы получают поликонденсацией формальдегида с фенолом или аминами. Это термореактивные полимеры, у которых в результате образования поперечных связей образуется сетчатая пространственная структура, которую невозможно превратить в линейную структуру, т.е. процесс идет необратимо. Их используют как основу для клеев, лаков, ионитов, пластмасс.

Пластмассы на основе фенолоформальдегидных смол получили название фенопластов, на основе мочевиноформальдегидных смол – аминопластов. Наполнителями фенопластов и аминопластов служит бумага или картон (гетинакс), ткань (текстолит), древесина, кварцевая и слюдяная мука и др. Фенопласты стойки к действию воды, растворов кислот, солей и оснований, органических растворителей, трудногорючи, атмосферостойки и являются хорошими диэлектриками. Используются в производстве печатных плат, корпусов электро- и радиотехнических изделий, фольгированных диэлектриков.

Аминопластыхарактеризуются высокими диэлектрическими и физико-механическими свойствами, устойчивы к действию света и УФ-лучей, трудногорючи, стойки к действию слабых кислот и оснований и многих растворителей. Они могут быть окрашены в любые цвета. Применяются для изготовления электротехнических изделий (корпусов приборов и аппаратов, выключателей, плафонов, тепло- и звукоизоляционных материалов и др.).

В настоящее время около 1/3 всех пластмасс применяется в электротехнике, электронике и машиностроении, 1/4 – в строительстве и примерно 1/5 – для упаковки. Растущий интерес к полимерам можно показать на примере автомобилестроения. Многие специалисты оценивают уровень совершенства автомобиля по доле использования в нем полимеров. Например, масса полимерных материалов возросла от 32 кг у ВАЗ-2101 до 76 кг у ВАЗ-2108. За рубежом средняя масса пластмасс составляет 75÷120 кг на автомашину.

Таким образом, полимеры находят чрезвычайно широкое применение в виде пластмасс и композитов, волокон, клеев и лаков, причем масштабы и области их использования постоянно возрастают.

Вопросы для самоконтроля:

1. Что такое полимеры? Их виды.

2. Что такое мономер, олигомер?

3. В чем заключается метод получения полимеров полимеризацией? Привести примеры.

4. В чем заключается метод получения полимеров поликонденсацией? Привести примеры.

5. В чем заключается радикальная полимеризация?

6. В чем заключается ионная полимеризация?

7. В чем заключается полимеризация в массе (блоке)?

8. В чем заключается эмульсионная полимеризация?

9. В чем заключается суспензионная полимеризация?

10. В чем заключается газовая полимеризация?

11. В чем заключается поликонденсация в расплаве?

12. В чем заключается поликонденсация в растворе?

13. В чем заключается поликонденсация на межфазной границе?

14. Какова форма и структура макромолекул полимеров?

15. Чем характеризуется кристаллическое состояние полимеров?

16. Каковы особенности физического состояния аморфных полимеров?

17. Каковы химические свойства полимеров?

18. Каковы физические свойства полимеров?

19. Какие материалы получают на основе полимеров?

20. Каково применение полимеров в различных отраслях промышленности?

Литература:

1. Артименко А.И. Органическая химия. - М.: Высш. шк. – 2002, 560 с.

2. Коровин Н.В. Общая химия. - М.: Высш. шк. – 1990, 560 с.

3. Глинка Н.Л. Общая химия. – М.: Высш. шк. – 1983, 650 с.

4. Глинка Н.Л. Сборник задач и упражнений по общей химии. – М.: Высш. шк. – 1983, 230 с.

5. Ахметов Н.С. Общая и неорганическая химия. М.:Высшая шк. – 2003, 743 с.

 

Лекция 17 (2 ч)

 

Тема 11. Химическая идентификация и анализ вещества

 

Вопросы:

11.1. Качественный анализ вещества.

11.2. Количественный анализ вещества. Химические методы анализа.

11.3. Инструментальные методы анализа.

 

11.1. Качественный анализ вещества

 

В практической деятельности часто возникает необходимость идентификации (обнаружения) того или иного вещества, а также количественной оценки (измерения) его содержания. Наука, которая занимается качественным и количественным анализом называется аналитической химией. Анализ проводят поэтапно: сначала проводят химическую идентификацию вещества (качественный анализ), а затем определяют, сколько вещества находится в образце (количественный анализ).

Химическая идентификация (обнаружение) – это установление вида и состояния фаз, молекул, атомов, ионов и других составных частей вещества на основе сопоставления экспериментальных и соответствующих справочных данных для известных веществ. Идентификация является целью качественного анализа. При идентификации обычно определяется комплекс свойств веществ: цвет, фазовое состояние, плотность, вязкость, температуры плавления, кипения и фазового перехода, растворимость, электродный потенциал, энергия ионизации и (или) т.д. Для облегчения идентификации созданы банки химических и физико-химических данных. При анализе многокомпонентных веществ часто используются универсальные приборы (спектрометры, спектрофотометры, хроматографы, полярографы и др.), снабженные компьютерами, в памяти которых имеется справочная химико-аналитическая информация. На базе этих универсальных установок создается автоматизированная система анализа и обработки информации.

В зависимости от вида идентифицируемых частиц различают элементный, молекулярный, изотопный и фазовый анализы. Поэтому наибольшее значение имеют методы определения, классифицируемые по характеру определяемого свойства, или по способу регистрации аналитического сигнала:

1) химические методы анализа,которые основаны на применении химических реакций. Они сопровождаются внешними эффектами (образование осадка, выделение газа, появление, исчезновение или изменение окраски);

2) физические методы,которые основаны на определенной взаимосвязи между физическими свойствами вещества и его химическим составом;

3) физико-химические методы, которые основаны на физических явлениях, сопровождающих химические реакции. Они наиболее распространены вследствие высокой точности, селективности (избирательности) и чувствительности. В первую очередь будут рассмотрены элементный и молекулярный анализы.

В зависимости от массы сухого вещества или объема раствора анализируемого вещества различают макрометод (0,5 – 10 г или 10 – 100 мл), полумикрометод (10 – 50 мг или 1 – 5 мл), микрометод (1-5 Гмг или 0,1 – 0,5 мл) и ультрамикрометод(ниже 1 мг или 0,1 мл) идентификаций.

Качественный анализ характеризуется пределом обнаружения (обнаруженным минимумом) сухого вещества, т. е. минимальным количеством надежно идентифицируемого вещества и предельной концентрацией раствора. В качественном анализе применяются только такие реакции, пределы обнаружения которых не менее 50 мкг.

Имеются некоторые реакции, которые позволяют обнаружить то или иное вещество или ион в присутствии других веществ или других ионов. Такие реакции называются специфическими. Примером таких реакций могут быть обнаружение ионов NH4+ действием щелочи или нагреванием

NH4Cl + NaOH = NH3­ + H2O + NaCl

или реакция иода с крахмалом (темно-синее окрашивание) и т.д.

Однако в большинстве случаев реакции обнаружения вещества не являются специфическими, поэтому мешающие идентификации вещества переводят в осадок, слабодиссоциирующее или комплексное соединение. Анализ неизвестного вещества проводят в определенной последовательности, при которой то или иное вещество идентифицируют после обнаружения и удаления, мешающих анализу других веществ, т.е. применяют не только реакции обнаружения веществ, но и реакции отделения их друг от друга.

Следовательно, качественный анализ вещества зависит от содержания примесей в нем, т. е. его чистоты. Если примеси содержатся в очень малых количествах, то их называют «следами». Термины отвечают молярным долям в %: «следы» 10-3 ÷ 10-1, «микроследы» – 10-6 ÷ 10-3, «ультрамикроследы» - 10-9 ÷ 10-6, субмикроследы – менее 10-9. Вещество называется высокочистым при содержании примесей не более 10-4 ÷ 10-3 % (мол. доли) и особо чистым (ультрачистым) при содержании примесей ниже 10-7 % (мол. доли). Имеется и другое определение особо чистых вещества, согласно которому они содержат примеси в таких количествах, которые не влияют на основные специфические свойства веществ. Однако значение имеет не любая примесь, а примеси, оказывающие влияние на свойства чистого вещества. Такие примеси называются лимитирующими или контролирующими.

При идентификации неорганических веществ проводят качественный анализ катионов и анионов. Методы качественного анализа базируются на ионных реакциях, которые позволяют идентифицировать элементы в форме тех или иных ионов. Как и при любом виде качественного анализа, в ходе реакций образуются труднорастворимые соединения, окрашенные комплексные соединения, происходит окисление или восстановление с изменением цвета раствора. Для идентификации с помощью образования труднорастворимых соединений используют как групповые, так и индивидуальные осадители.

При идентификации катионов неорганических веществ групповыми осадителями для ионов Ag+, Pb2+, Hg2+ служит NaCl; для ионов Ca2+, Sr2+, Ba2+ - (NH4)2CO3, для ионов Al3+, Cr3+, Fe2+, Fe3+, Mn2+, Co2+, Ni2+, Zn2+ и др. - (NH4)2S.

Если присутствует несколько катионов, то проводят дробный анализ, при котором осаждаются все труднорастворимые соединения, а затем обнаруживаются оставшиеся катионы тем или иным методом, либо проводят ступенчатое добавление реагента, при котором сначала осаждаются соединения с наименьшим значением ПР, а затем соединения с более высоким значением ПР. Любой катион можно идентифицировать с помощью определенной реакции, если удалить другие катионы, мешающие этой идентификации. Имеется много органических и неорганических реагентов, образующих осадки или окрашенные комплексные соединения с катионами (табл. 9).

Идентификация анионов. Анионы обычно классифицируют по растворимости солей, либо по окислительно-восстановительным свойствам. Так многие анионы (SO42-, SO32-, CO32-, SiO32-, F-, PO43-, CrO43- и др.) имеют групповой реагент BaCl2 в нейтральной или слабо кислой среде, так как соли бария и этих анионов мало растворимы в воде. Групповым реагентом в растворе HNO3 на ионы Cl-, Br-, I-, SCN-, CN-, S2-, ClO-, [Fe(CN)6]4- и др. служит AgNO3. Классификация анионов по окислительно-восстановительным свойствам приведена в табл. 10.

– Конец работы –

Эта тема принадлежит разделу:

По дисциплине Химия. Курс лекций

Факультет заочного обучения.. Е В Семенова..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Применение полимеров

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Воронеж 2011
  Лекция № 1 (2ч)   Введение   Вопросы: 1. Предмет химии. Значение химии в изучении природы и развитии техники. 2. Осно

Основные количественные законы химии
  К основным количественным законам химии относятся:закон постоянства состава, закон кратных отношений и закон эквивалентов. Эти законы были открыты в конце XIII – начале XIX веков, и

Современная модель строения атома
В основе современной теории строения атома лежат работы Дж. Томсона (который в 1897 г. открыл электрон, а в 1904 г. предложил модель строения атома, согласно которой атом – это заряженная сфера с в

Орбитальное квантовое число 0 1 2 3 4
Каждому значению l соответствует орбиталь особой формы, например s-орбиталь имеет сферическую форму, р-орбиталь – гантель. В одной и той же оболочке энергия подуровней возрастает в ряду E

Строение многоэлектронных атомов
  Подобно любой системе, атомы стремятся к минимуму энергии. Это достигается при определенном состоянии электронов, т.e. при определенном распределении электронов по орбиталям. Запись

Периодические свойства элементов
Так как электронное строение элементов изменяется периодически, то, соответственно, периодически изменяются и свойства элементов, определяемые их электронным строением, такие как энергия ионизации,

Периодическая система элементов Д.И.Менделеева
В 1869 г. Д. И. Менделеев сообщил об открытии периодического закона, современная формулировка которого следующая: свойство элементов, а также формы и свойства их соединений

Общая характеристика химической связи
Учение о строении вещества объясняет причины многообразия структуры веществ в различных агрегатных состояниях. Современные физические и физико-химические методы позволяют экспериментально определят

Типы химической связи
К основным типам химической связи относят ковалентную (полярную и неполярную), ионную и металлическую связи. Ковалентной связью называют химическую связь, образованную

Типы межмолекулярных взаимодействий
Связи, при образовании которых перестройка электронных оболочек не происходит, называются взаимодействием между молекулами. К основным видам взаимодействия молекул следует о

Пространственная структура молекул
  Пространственная структура молекул зависит от пространственной направленности перекрывания электронных облаков числом атомов в молекуле и числом электронных пар связей за счет непод

Общая характеристика агрегатного состояния вещества
Почти все известные вещества в зависимости от условий находятся в газообразном, жидком, твердом или плазменном состоянии. Это и называется агрегатным состоянием вещества. Аг

Газообразное состояние вещества. Законы идеальных газов. Реальные газы
Газы распространены в природе и находят широкое применение в технике. Их используют в качестве топлива, теплоносителей, сырья для химической промышленности, рабочего тела для выполнения механическо

Характеристика жидкого состояния вещества
Жидкости по своим свойствам занимают промежуточное положение между газообразными и твердыми телами. Вблизи точки кипения они проявляют сходство с газами: текучи, не имеют определенной формы, аморфн

Характеристики некоторых веществ
    Вещество     Вид кристалла   Энергия кристаллической решетки, кДж/моль   Темпер

Общие понятия термодинамики
  Термодинамика – наука, изучающая превращения различных форм энергии друг в друга и устанавливающая законы этих превращений. Как самостоятельная дисциплин

Термохимия. Тепловые эффекты химических реакций
  Любые химические процессы, а также ряд физических превращений веществ (испарение, конденсация, плавление, полиморфные превращения и др.) всегда сопровождаются изменением запаса внут

Закон Гесса и следствия из него
  На основе многочисленных экспериментальных исследований русским академиком Г. И. Гессом был открыт основной закон термохимии (1840 г.) – закон постоянства сумм теплот реа

Принцип работы тепловой машины. КПД системы
Тепловой машинойназывается такое устройство, которое преобразует теплоту в работу. Первая тепловая машина была изобретена в конце XVIII века (паровая). Сейчас существуют дви

Свободная и связанная энергии. Энтропия системы
  Известно, что любая форма энергии может полностью преобразовываться в теплоту, но теплота преобразуется в другие виды энергии лишь частично, условно запас внутренней энергии системы

Влияние температуры на направление химических реакций
  DH DS DG Направление реакции DH < 0 DS > 0 DG < 0

Понятие о химической кинетике
  Химической кинетикой называется учение о скорости химических реакций и ее зависимости от различных факторов – природы и концентрации реагирующих веществ, давления,

Факторы, влияющие на скорость химических реакций. Закон действующих масс
  На скорость химических реакций оказывают влияние следующие факторы: природа и концентрации реагирующих веществ; температура, природа растворителя, присутствие катализатора и т.д.

Теория активизации молекул. Уравнение Аррениуса
  Скорость любой химической реакции зависит от числа столкновений реагирующих молекул, так как число столкновения пропорционально концентрациям реагирующих веществ. Однако не все стол

Особенности каталитических реакций. Теории катализа
  Скорость химической реакции можно регулировать с помощью катализатора. Вещества, которые участвуют в реакциях и изменяют (чаще всего увеличивают) ее скорость, оставаясь к концу реак

Обратимые и не обратимые реакции. Признаки химического равновесия
Все реакции можно поделить на две группы: обратимые и необратимые. Необратимые реакции сопровождаются выпадением осадка, образованием малодиссоциирующего вещества или выделением газа. Обратимые реа

Константа химического равновесия
  Рассмотрим обратимую химическую реакцию общего вида, в которой все вещества находятся в одном агрегатном состоянии, например, жидком: аA + вB D сC + dD, где

Правило фаз Гиббса. Диаграмма состояния воды
Качественная характеристика гетерогенных равновесных систем, в которых не происходит химического взаимодействия, а наблюдается лишь переход составных частей системы из одного агрегатного состояния

Правило фаз для воды имеет вид
С = 1+ 2 – Ф = 3 – Ф если Ф = 1, то С = 2 (система бивариантна) Ф = 2, то С = 1 (система одновариантна) Ф = 3, то С = 0 (система безвариантна) Ф = 4, то С = -1 (

Понятие о химическом сродстве веществ. Уравнения изотермы, изобары и изохоры химических реакций
Под термином «химическое сродство» понимают способность веществ вступать в химическое взаимодействие друг с другом. У различных веществ оно зависит от природы реагирующих ве

Сольватная (гидратная) теория растворения
  Растворами называются гомогенные системы, состоящие из двух или более веществ, состав которых может меняться в довольно широких пределах, допустимых раст

Общие свойства растворов
  В конце XIX века Рауль, Вант-Гофф, Аррениус установили весьма важные закономерности, связывающие концентрацию раствора с давлением насыщенного пара растворителя над раствором, темпе

Типы жидких растворов. Растворимость
Способность к образованию жидких растворов выражена в различной степени у различных индивидуальных веществ. Одни вещества способны растворяться неограниченно (вода и спирт), другие – лишь в огранич

Свойства слабых электролитов
При растворении в воде или других растворителях, состоящих из полярных молекул, электролиты подвергаются диссоциации, т.е. в большей или меньшей степени распадаются на положительно и отрицательно з

Свойства сильных электролитов
Электролиты, практически полностью диссоциирующие в водных растворах, называются сильными электролитами. К сильным электролитам относятся большинство солей, которые уже в кр

При соблюдении этих условий коллоидные частицы приобретают электрический заряд и гидратную оболочку, что препятствует выпадению их в осадок.
К дисперсионным методам получения коллоидных систем относятся: механические – дробление, растирание, размол и т. д.; электрический – получение золей металлов под действ

Устойчивость коллоидных растворов. Коагуляция. Пептизация
  Под устойчивостью коллоидного раствора понимают постоянство основных свойств этого раствора: сохранение размеров частиц (агрегативная устойчивость

Свойства коллоидно-дисперсных систем
Все свойства коллоидно-дисперсных систем можно разделить на три основные группы: молекулярно-кинетические, оптические и электрокинетические. Рассмотрим молекулярно-кинетические

Особенности обменных процессов
Химические реакции разделяются на обменные и окислительно-восстановительные (Ox-Red). Если в реакции не происходит изменение степени окисления, то такие реакции называются обменными. Они возможны п

Особенности окислительно-восстановительных процессов
  При окислительно-восстановительных реакциях происходит изменение степени окисления вещества. Реакции можно разделить на те, которые проходят в одном реакционном объеме (например, в

Общие понятия электрохимии. Проводники первого и второго рода
Электрохимия – это раздел химии, занимающийся изучением закономерностей взаимных превращений электрической и химической энергии. Электрохимические процессы можно разде

Понятие об электродном потенциале
Рассмотрим процессы, протекающие в гальванических элементов, т. е. процессы превращения химической энергии в электрическую. Гальваническим элементомназывают электрохим

Гальванический элемент Даниэля-Якоби
Рассмотрим систему, в которой два электрода находятся в растворах собственных ионов, например, гальванический элемент Даниэля-Якоби. Он состоит из двух полуэлементов: из цинковой пластины, погружен

Электродвижущая сила гальванического элемента
  Максимальная разность потенциалов электродов, которая может быть получена при работе гальванического элемента, называется электродвижущей силой (ЭДС) элемента.

Поляризация и перенапряжение
  При самопроизвольных процессах устанавливается равновесный потенциал электродов. При прохождении электрического тока потенциал электродов изменяется. Изменение потенциала электрода

Электролиз. Законы Фарадея
Электролизом называют процессы, протекающие на электродах под действием электрического тока, подаваемого от внешнего источника тока через электролиты. При элект

Коррозия металлов
Коррозия – это разрушение металла в результате его физико-химического взаимодействия с окружающей средой. Это процесс самопроизвольный, идущий с уменьшением энергии Гиббса сист

Методы получения полимеров
  Полимеры – высокомолекулярные соединения, которые характеризуются молекулярной массой от нескольких тысяч до многих миллионов. Молекулы полимеров, называ

Строение полимеров
Макромолекулы полимеров могут быть линейными, разветвленными и сетчатыми. Линейные полимеры – это полимеры, которые построены из длинных цепей одномерных элементов, т.

Свойства полимеров
  Свойства полимеров условно можно разделить на химические и физические. И те, и другие свойства связаны с особенностями строения полимеров, способом их получения, природой вводимых в

Некоторые реагенты для идентификации катионов
  Реагент Формула Катион Продукт реакции Ализарин C14H6O

Инструментальные методы анализа
В последние годы все более широкое применение получают инструментальные метода анализа, обладающие многими достоинствами: быстротой, высокой чувствительностью, возможностью одновременного определен

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги