рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Особенности обменных процессов

Особенности обменных процессов - раздел Химия, По дисциплине Химия КУРС ЛЕКЦИЙ Химические Реакции Разделяются На Обменные И Окислительно-Восстановительные (...

Химические реакции разделяются на обменные и окислительно-восстановительные (Ox-Red). Если в реакции не происходит изменение степени окисления, то такие реакции называются обменными. Они возможны при условии, что образуется осадок, малодиссоциирующее вещество или выделяется газ.

Типы обменных химических процессов в водной среде: реакции нейтрализации – процесс между кислотой и щелочью:

HCl + NaOH → NaCl + H2O,

взаимодействие между кислотой и солью:

HCl + AgNO3 → HNO3+ AgCl↓,

реакции между щелочью и солью:

Ba(OH)2 + K2SO4 → BaSO4↓ + KOH,

реакции между двумя растворимыми солями:

AgNO3 + KCl → KNO3 + AgCl↓,

гидролиз солей – реакции обмена между водой и растворенными в ней солями. Гидролизу подвергаются растворимые соли, образованные сильными кислотами и слабыми основаниями (а); слабыми кислотами и сильными основаниями (б); слабыми кислотами и слабыми основаниями (в):

а) NH4Cl + H2O D NH4OH + HCl

или в ионном виде:

NH4+ + Cl- + H2O D NH4OH + H+ + Cl-

в сокращенном ионном виде:

NH4+ + H2O D NH4OH + H+ (pH <7 – среда кислая)

константа равновесия этой системы:

KС =

Поскольку концентрация воды при гидролизе изменяется очень мало, то ее принимают постоянной и, умножая на константу равновесия, получают константу гидролиза Kг:

KС[H2O] = Kг = (8.1)

Умножим числитель и знаменатель уравнения (8.1) на концентрацию OHионов:

KГ = (8.2)

Константа гидролиза соли зависит от природы соли, температуры. Показателем глубины протекания гидролиза является степень гидролиза (β), которая представляет собой отношение концентрации гидролизованных молекул Cгидр к исходной концентрации растворенных молекул электролита:

β = Сгидр/С; (С = β.Сгидр) (8.3)

Степень гидролиза, как правило, невелика. Например, 0,1 моль/дм3 CH3COONa при 298К β = 10-4. Это связано с тем, что вода – слабый электролит и равновесие смещается в сторону исходных веществ. С увеличением температуры и снижением концентрации соли степень гидролиза снижается (гидролиз – эндотермический процесс).

Уравнение (8.1) с учетом (8.3) принимает вид:

KГ = (8.4)

Если β << 1, то

Kг = β2C (8.5)

Следовательно

β = (8.6)

Используя последнее уравнение можно найти концентрацию ионов водорода, а, следовательно, и pH раствора:

[H+] = βC = pH = -lg (8.7)

б) Гидролиз ацетата натрия:

CH3COONa + H2O D CH3COOH + NaOH

CH3COO- + H2O D CH3COOH + OH- (pH >7 – щелочная среда)

Степень гидролиза и константа гидролиза в данном случае описываются теми же уравнениями (8.2), (8.3) и (8.4), но лишь с тем исключением, что в уравнениях (8.2) и (8.4) входит константа диссоциации слабой кислоты.

Равновесную концентрацию гидроксид ионов рассчитывают по уравнению:

[OH-] = βC = (8.8)

Отсюда

рH = pKв- pOH = pKв – lg (8.9)

Если гидролизу подвергается многоосновный анион, то гидролиз протекает по стадиям:

CO+ H2O D HCO+ OH-

HCO+ H2O D H2CO+ OH-

константа гидролиза по первой ступени значительно выше, чем константа гидролиза по последней ступени. Например, для гидролиза CO, при 298 К:

КГ1 = 2.10-4; К Г2 = 2,2.10-8.

Поэтому при расчете концентрации иона [ОН-] или [Н+], второй и третьей ступенью обычно пренебрегают. Для расчета константы гидролиза по первой ступени входит константа диссоциации слабого электролита по первой ступени:

CO+ H2O D HCO+ OH-

равна

в) Рассмотрим гидролиз растворимой соли, образованной слабой кислотой и слабым основанием:

NH4F + H2O D NH4OH + HF

или в ионной форме

NH4+ + F- + H2O D NH4+ + OH- + H+ + F- (pH7, среда нейтральна)

(8.9)

Степень гидролиза и концентрация ионов водорода в этом случае не зависит от исходной концентрации соли:

(8.10)

(8.11)

(8.12)

Как видно, в зависимости от соотношения pКД,К и pКД,О среда может иметь как кислую, так и основную реакцию.

Таким образом, при гидролизе солей, образованных слабыми кислотами или (и) основаниями, происходит подщелачивание или подкисление раствора, степень гидролиза возрастает с разбавлением раствора при увеличении температуры.

Теории кислот и оснований. При объяснении кислотно-основных взаимодействий применяют различные подходы; большинство теорий не противоречат друг другу, но имеют различные области применения. Наиболее известны теория, основанная на механизме электролитической диссоциации, протонная и электронная теории кислот и оснований.

Согласно теории электролитической диссоциации, применимой к водным растворам, кислотойявляется электролит, который диссоциирует с образованием ионов Н(или гидроксония Н3О+). Сильные кислоты (НСl, НNО3, Н24 и др.) диссоциируют практически полностью, у слабых кислот диссоциирована лишь часть молекул. О силе кислот можно судить по константе диссоциации. Чем больше константа диссоциации, тем больше диссоциирована кислота.

Электролит, диссоциирующий с образованием ОН, называют основанием. Сильные основания (LiOH, NaOH, KOH и др.) диссоциируют полностью, у слабых оснований диссоциации подвергается лишь часть молекул.

Амфотерные электролиты диссоциируют как кислоты (2H+ + [Zn(OH)4]-2), и как основания ([Zn(H2O)2]+2 + OH-), например:

2H+ + [Zn(OH)4]-2 D Zn(OH)2 + H2O D [Zn(H2O)2]+2 + OH-

При взаимодействии гидроксида цинка, например, с азотной кислотой образуется нитрат цинка:

Zn(OH)2 + 2НNО3 = Zn(NО3)2 + 2H2O

при взаимодействии же с гидроксидом калия – цинкат калия:

Zn(OH)2 + 2KOH = K2[Zn(OH)4]

К амфотерным электролитам так же относятся гидроксиды алюминия Al(OH)3, свинца Pb(OH)2, олова Sn(OH)2 и др. Амфотерность электролитов объясняется малым различием связей R-OH и O-H.

Теория электролитической диссоциации неприменима к взаимодействиям, не сопровождающимся диссоциацией на ионы. Например, аммиак, реагируя с безводным фтором водорода, образует соль фторид аммония NH3 + HF = NH4F. Аммиак, не имея в своем составе гидроксидной группы, ведет себя как основание.

Протонная теория кислот и оснований Д. Брендстеда (1923) применима как к водным, так и неводным средам. Согласно протонной теории, кислоту считают донором протона, а основание – акцептором протонов. При взаимодействии кислота отдает, а основание принимает протон. Соотношение между основанием и кислотой можно представить схемой:

Основание + Протон D Кислота

Основание и кислота, связанные данным соотношением, называются сопряженными. Взаимодействие между кислотой и основанием согласно протонной теории проходит по схеме:

Кислота1 + Основание2 D Кислота2 + Основание1

В зависимости от партнера, то или иное вещество может быть или кислотой, или основанием. Например, вода по отношению к аммиаку является кислотой, по отношению к фториду водорода – основанием, а при диссоциации – и как кислота, и как основание:

H2O + NH3 D OH- + NH4+

HF + H2O D F- + OH3+

H2O + H2O D OH- + OH3+

кислота основание основание кислота

Кислотно-основные свойства, согласно протонной теории, количественно характеризуются протонным сродством, или энергией, которая выделяется при присоединении протона к молекуле или иону. Роль основания играет тот партнер, у которого протонное сродство выше.

Электронная теория кислот и оснований выдвинута Дж. Льюисом (1924). Согласно этой теории, кислота является акцептором, а основание – донором электронов. Если в состав кислоты входит водород, то она называется водородной, а если не входит, то – апротонной. Взаимодействие кислоты и основания по Льюису, приводит к образованию ковалентной связи по донорно-акцепторному механизму:

 

 

 

Кислота основание продукт нейтрализации

Электронная теория охватывает более широкий круг соединений, чем протонная теория.

Таким образом, кислотно-основные взаимодействия объясняются теорией электролитической диссоциации, протонной или электронной теориями.

– Конец работы –

Эта тема принадлежит разделу:

По дисциплине Химия КУРС ЛЕКЦИЙ

Факультет заочного обучения... Е В Семенова...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Особенности обменных процессов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Воронеж 2011
  Лекция № 1 (2ч)   Введение   Вопросы: 1. Предмет химии. Значение химии в изучении природы и развитии техники. 2. Осно

Основные количественные законы химии
  К основным количественным законам химии относятся:закон постоянства состава, закон кратных отношений и закон эквивалентов. Эти законы были открыты в конце XIII – начале XIX веков, и

Современная модель строения атома
В основе современной теории строения атома лежат работы Дж. Томсона (который в 1897 г. открыл электрон, а в 1904 г. предложил модель строения атома, согласно которой атом – это заряженная сфера с в

Орбитальное квантовое число 0 1 2 3 4
Каждому значению l соответствует орбиталь особой формы, например s-орбиталь имеет сферическую форму, р-орбиталь – гантель. В одной и той же оболочке энергия подуровней возрастает в ряду E

Строение многоэлектронных атомов
  Подобно любой системе, атомы стремятся к минимуму энергии. Это достигается при определенном состоянии электронов, т.e. при определенном распределении электронов по орбиталям. Запись

Периодические свойства элементов
Так как электронное строение элементов изменяется периодически, то, соответственно, периодически изменяются и свойства элементов, определяемые их электронным строением, такие как энергия ионизации,

Периодическая система элементов Д.И.Менделеева
В 1869 г. Д. И. Менделеев сообщил об открытии периодического закона, современная формулировка которого следующая: свойство элементов, а также формы и свойства их соединений

Общая характеристика химической связи
Учение о строении вещества объясняет причины многообразия структуры веществ в различных агрегатных состояниях. Современные физические и физико-химические методы позволяют экспериментально определят

Типы химической связи
К основным типам химической связи относят ковалентную (полярную и неполярную), ионную и металлическую связи. Ковалентной связью называют химическую связь, образованную

Типы межмолекулярных взаимодействий
Связи, при образовании которых перестройка электронных оболочек не происходит, называются взаимодействием между молекулами. К основным видам взаимодействия молекул следует о

Пространственная структура молекул
  Пространственная структура молекул зависит от пространственной направленности перекрывания электронных облаков числом атомов в молекуле и числом электронных пар связей за счет непод

Общая характеристика агрегатного состояния вещества
Почти все известные вещества в зависимости от условий находятся в газообразном, жидком, твердом или плазменном состоянии. Это и называется агрегатным состоянием вещества. Аг

Газообразное состояние вещества. Законы идеальных газов. Реальные газы
Газы распространены в природе и находят широкое применение в технике. Их используют в качестве топлива, теплоносителей, сырья для химической промышленности, рабочего тела для выполнения механическо

Характеристика жидкого состояния вещества
Жидкости по своим свойствам занимают промежуточное положение между газообразными и твердыми телами. Вблизи точки кипения они проявляют сходство с газами: текучи, не имеют определенной формы, аморфн

Характеристики некоторых веществ
    Вещество     Вид кристалла   Энергия кристаллической решетки, кДж/моль   Темпер

Общие понятия термодинамики
  Термодинамика – наука, изучающая превращения различных форм энергии друг в друга и устанавливающая законы этих превращений. Как самостоятельная дисциплин

Термохимия. Тепловые эффекты химических реакций
  Любые химические процессы, а также ряд физических превращений веществ (испарение, конденсация, плавление, полиморфные превращения и др.) всегда сопровождаются изменением запаса внут

Закон Гесса и следствия из него
  На основе многочисленных экспериментальных исследований русским академиком Г. И. Гессом был открыт основной закон термохимии (1840 г.) – закон постоянства сумм теплот реа

Принцип работы тепловой машины. КПД системы
Тепловой машинойназывается такое устройство, которое преобразует теплоту в работу. Первая тепловая машина была изобретена в конце XVIII века (паровая). Сейчас существуют дви

Свободная и связанная энергии. Энтропия системы
  Известно, что любая форма энергии может полностью преобразовываться в теплоту, но теплота преобразуется в другие виды энергии лишь частично, условно запас внутренней энергии системы

Влияние температуры на направление химических реакций
  DH DS DG Направление реакции DH < 0 DS > 0 DG < 0

Понятие о химической кинетике
  Химической кинетикой называется учение о скорости химических реакций и ее зависимости от различных факторов – природы и концентрации реагирующих веществ, давления,

Факторы, влияющие на скорость химических реакций. Закон действующих масс
  На скорость химических реакций оказывают влияние следующие факторы: природа и концентрации реагирующих веществ; температура, природа растворителя, присутствие катализатора и т.д.

Теория активизации молекул. Уравнение Аррениуса
  Скорость любой химической реакции зависит от числа столкновений реагирующих молекул, так как число столкновения пропорционально концентрациям реагирующих веществ. Однако не все стол

Особенности каталитических реакций. Теории катализа
  Скорость химической реакции можно регулировать с помощью катализатора. Вещества, которые участвуют в реакциях и изменяют (чаще всего увеличивают) ее скорость, оставаясь к концу реак

Обратимые и не обратимые реакции. Признаки химического равновесия
Все реакции можно поделить на две группы: обратимые и необратимые. Необратимые реакции сопровождаются выпадением осадка, образованием малодиссоциирующего вещества или выделением газа. Обратимые реа

Константа химического равновесия
  Рассмотрим обратимую химическую реакцию общего вида, в которой все вещества находятся в одном агрегатном состоянии, например, жидком: аA + вB D сC + dD, где

Правило фаз Гиббса. Диаграмма состояния воды
Качественная характеристика гетерогенных равновесных систем, в которых не происходит химического взаимодействия, а наблюдается лишь переход составных частей системы из одного агрегатного состояния

Правило фаз для воды имеет вид
С = 1+ 2 – Ф = 3 – Ф если Ф = 1, то С = 2 (система бивариантна) Ф = 2, то С = 1 (система одновариантна) Ф = 3, то С = 0 (система безвариантна) Ф = 4, то С = -1 (

Понятие о химическом сродстве веществ. Уравнения изотермы, изобары и изохоры химических реакций
Под термином «химическое сродство» понимают способность веществ вступать в химическое взаимодействие друг с другом. У различных веществ оно зависит от природы реагирующих ве

Сольватная (гидратная) теория растворения
  Растворами называются гомогенные системы, состоящие из двух или более веществ, состав которых может меняться в довольно широких пределах, допустимых раст

Общие свойства растворов
  В конце XIX века Рауль, Вант-Гофф, Аррениус установили весьма важные закономерности, связывающие концентрацию раствора с давлением насыщенного пара растворителя над раствором, темпе

Типы жидких растворов. Растворимость
Способность к образованию жидких растворов выражена в различной степени у различных индивидуальных веществ. Одни вещества способны растворяться неограниченно (вода и спирт), другие – лишь в огранич

Свойства слабых электролитов
При растворении в воде или других растворителях, состоящих из полярных молекул, электролиты подвергаются диссоциации, т.е. в большей или меньшей степени распадаются на положительно и отрицательно з

Свойства сильных электролитов
Электролиты, практически полностью диссоциирующие в водных растворах, называются сильными электролитами. К сильным электролитам относятся большинство солей, которые уже в кр

При соблюдении этих условий коллоидные частицы приобретают электрический заряд и гидратную оболочку, что препятствует выпадению их в осадок.
К дисперсионным методам получения коллоидных систем относятся: механические – дробление, растирание, размол и т. д.; электрический – получение золей металлов под действ

Устойчивость коллоидных растворов. Коагуляция. Пептизация
  Под устойчивостью коллоидного раствора понимают постоянство основных свойств этого раствора: сохранение размеров частиц (агрегативная устойчивость

Свойства коллоидно-дисперсных систем
Все свойства коллоидно-дисперсных систем можно разделить на три основные группы: молекулярно-кинетические, оптические и электрокинетические. Рассмотрим молекулярно-кинетические

Особенности окислительно-восстановительных процессов
  При окислительно-восстановительных реакциях происходит изменение степени окисления вещества. Реакции можно разделить на те, которые проходят в одном реакционном объеме (например, в

Общие понятия электрохимии. Проводники первого и второго рода
Электрохимия – это раздел химии, занимающийся изучением закономерностей взаимных превращений электрической и химической энергии. Электрохимические процессы можно разде

Понятие об электродном потенциале
Рассмотрим процессы, протекающие в гальванических элементов, т. е. процессы превращения химической энергии в электрическую. Гальваническим элементомназывают электрохим

Гальванический элемент Даниэля-Якоби
Рассмотрим систему, в которой два электрода находятся в растворах собственных ионов, например, гальванический элемент Даниэля-Якоби. Он состоит из двух полуэлементов: из цинковой пластины, погружен

Электродвижущая сила гальванического элемента
  Максимальная разность потенциалов электродов, которая может быть получена при работе гальванического элемента, называется электродвижущей силой (ЭДС) элемента.

Поляризация и перенапряжение
  При самопроизвольных процессах устанавливается равновесный потенциал электродов. При прохождении электрического тока потенциал электродов изменяется. Изменение потенциала электрода

Электролиз. Законы Фарадея
Электролизом называют процессы, протекающие на электродах под действием электрического тока, подаваемого от внешнего источника тока через электролиты. При элект

Коррозия металлов
Коррозия – это разрушение металла в результате его физико-химического взаимодействия с окружающей средой. Это процесс самопроизвольный, идущий с уменьшением энергии Гиббса сист

Методы получения полимеров
  Полимеры – высокомолекулярные соединения, которые характеризуются молекулярной массой от нескольких тысяч до многих миллионов. Молекулы полимеров, называ

Строение полимеров
Макромолекулы полимеров могут быть линейными, разветвленными и сетчатыми. Линейные полимеры – это полимеры, которые построены из длинных цепей одномерных элементов, т.

Свойства полимеров
  Свойства полимеров условно можно разделить на химические и физические. И те, и другие свойства связаны с особенностями строения полимеров, способом их получения, природой вводимых в

Применение полимеров
На основе полимеров получают волокна, пленки, резины, лаки, клеи, пластмассы и композиционные материалы (композиты). Волокна получают путем продавливания растворов или

Некоторые реагенты для идентификации катионов
  Реагент Формула Катион Продукт реакции Ализарин C14H6O

Инструментальные методы анализа
В последние годы все более широкое применение получают инструментальные метода анализа, обладающие многими достоинствами: быстротой, высокой чувствительностью, возможностью одновременного определен

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги