рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Детальная разбивка кривых

Детальная разбивка кривых - раздел Геология, Инженерна геодезия Х1 ...

Х1
У1
У2
Х2
Х3
k
k
k
b
b
b
R
НК
У3  
1. Способ прямоугольных координат(в открытой местности при больших радиу­сах R).

 

 

Рис. 9.16. Способ прямоугольных координат

Кривая разбивается на равные части через k = 1; 5; 10; 20; … м. Для построения точек на местности по значению длины дуги k вычисляется угол , по значению b вычисляются координаты точек 1, 2, 3 и т.д. по формулам:

Х1 = Rsinb, У1 = ;

Х2 = Rsin2b, У2 = . (9.7)

На местности для построения т. 1 отрезок Х1 откладывают от НК по линии тангенсов, по перпендикуляру - У1. Для построения т. 2 отрезок Х2 откладывают от НК по линии тангенсов, по перпендикуляру - У2.

Более точно положение т. 1 получают откладыванием отрезка k по линии тангенсов и назад отступают на величину k – х1, т. 2 откладыванием отрезка 2k по линии тангенсов и назад отступают на величину 2k – х2 и т.д.

2. Способ продолженных хорд(в стесненных условиях при 200 £ R £300 м).

Шаг разбивки кривой а. По значению а и радиусу R вычисляют координаты т. 1 по формулам (9.8)

Для построения т. 1 (рис. 9.17) по линии тангенсов на местности откладывают от НК отрезок х1, а по перпендикуляру - у1. Для построения т. 2 соединяют НК, т. 1 и далее в створе откладывают отрезок а. Получают вспомогательную т. 2¢. Из т. 2¢ отрезком, равным b, а из т. 1 отрезком, равным а, получают т. 2. Для построения т. 3 соединяют т. 1, т. 2 и далее в створе откладывают отрезок а. Получают вспомогательную т.3¢. Из т. 3¢ отрезком, равным b, а из т. 2 отрезком, равным а, получают т. 3.

 

;

у1 = ; . (9.8)

х1
у1
а
а
а
b
b
b
R
НК
а
а
b
b
2¢
3¢

 


Рис. 9.17. Способ продолженных хорд

3. Способ углов(в любых условиях, при любых R)

Угол вычисляют по формуле sin = . (9.9)

Для построения т. 1 (рис. 9.18) теодолитом от линии тангенсов строят угол , откладывают хорду а. Для построения т. 2 теодолитом от линии тангенсов строят угол 2 , из т. 1 делают засечку отрезком, равным а, на построенном луче угла.

 
 
а
а
b
b
b
R
НК
 

 

 


Рис. 9.18. Способ углов

пк 11
НК
пк 10+58,50
ВУ пк 11+54,94  
R = 500 м
пк 11
0,05
1,72
41,50
41,45
СК
9.4.3. Вынос пикета на кривую

 

Рис. 9.19. Вынос пикета на кривую

От НК до пк 11 (рис. 9.19) вычисляют расстояние = 1100 – 1058,50 = 41,50 м.

С учетом формулы вычисляют (9.10)

b = ,

а затем координаты выносимого пикета по формулам:

х = R sinb, у = . (9.11)

х = 500 м × sin 4°45¢20² = 41,45 м;

У = 2∙ 500 sin2 2°22¢40² = 1,72 м.

Для выноса пикета на кривую от пк 11 назад отступают на величину

41,50 – 41,45 = 0,05 м

и по перпендикуляру откладывают у = 1,72 м.

– Конец работы –

Эта тема принадлежит разделу:

Инженерна геодезия

Федеральное агентство по образованию.. Южно-Уральский государственный университет.. Кафедра Градостроительство..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Детальная разбивка кривых

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ИнженернАЯ геодезиЯ
Учебное пособие   Челябинск Издательство ЮУрГУ УДК 528.48 (076.5) + 528,4 (075.8) М636   Одобрено учеб

Краткая историческая справка о развитии Геодезии
Возникновение геодезии относится к глубокой древности. Известно, что в государствах Ближнего Востока за несколько тысячелетий до н.э. была создана сложная ирригационная система. За 2150 лет до н.э.

Предмет и задачи геодезии
Геодезия – наука об измерениях на земной поверхности, проводимых для определения формы и размеров Земли, изображения земной поверхности в виде планов, карт и профилей, для решения инженерных и наро

Математические модели поверхности Земли, применяемые в геодезии
1. Если бы Земля была бы однородной, неподвижной и подвержена только действию внутренних сил тяготения, она имела бы форму шара(рис.1.2).     &

Система географических (астрономических) координат
j l а Э

Система геодезических координат
В L А Э

Прямая и обратная геодезические задачи. Их применение в геодезическом производстве
х1 х2 у1

Масштабы
Масштаб – отношение длины линии на плане к соответствующей проекции этой линии на местности. а) Численный масштаб– число, правильная дробь, в числителе –

Основы математической обработки геодезических измерений
Геодезические измерения определяют относительное положение точек земной поверхности. Различают следующие виды измерений: 1) линейные – получают наклонные и горизонтальные расстоян

Геодезические планы, карты
План– чертеж, представляющий собой уменьшенное и подобное изображе­ние ее проекции на горизонтальную плоскость (рис. 5.1, а). На плане длины линий, углы, площади контуров

Условные знаки на планах, картах, геодезических и строительных чертежах
Для обозначения на планах и картах различных предметов местности применяют специально разработанные условные знаки. Условные знаки делятся на: а) контурные (масшт

Номенклатура топографических планов и карт
Номенклатура – система разграфки и обозначений топографиче­ских планов и карт. В основу номенклатуры карт на территории Российской Федерации положена международная разграфка листов карты м

Основные формы рельефа
а) Гора, холм (рис. 5.16) – куполообразная или коническая возвышенность земной поверхности Вершина

Горизонтали
Горизонталь - замкнутая кривая линия, все точки которой имеют одну и ту же высоту над начальной уровенной поверхностью Свойства горизонталей: - точки, лежащие на одной и то

Уклон линии. Графики заложений
Уклон i линии – отношение превышения h к заложению линии d (рис. 5.22). Уклон – мера крутизны ската. Например, h = 1 м, d = 20 м. i = 1/20 = 0,05. Уклоны выражаются в процентах i

Задачи, решаемые по карте
      Склонение на 2005 г. восточное 6°12¢. Среднее сближение меридианов западное 2°

Методы, схемы, точность и плотность пунктов при создании сети
- триангуляция (рис. 6.1) применяется в открытой местности:     Рис. 6.1. Триангуляция - полигонометрия (рис. 6.2) применяется в закрытой местности:

Схемы, методы, точность и плотность пунктов при создании сети
Схемысоздания сети:   Рис. 6.7. Схема нивелирования I – IV классов: Линии нивелирования I класса Линии нивелирования II

Измерение линий лентой
- провешивание линий   Рис. 7.1. Измерение линии лентой Измеренное расстояние вычисляется по формуле , (7.1) где Д – расстояние между точками,

Измерения расстояния нитяным дальномером
d f d¢

Дальномерные определения расстояний
- b2   Д2

Принцип измерения горизонтальных и вертикальных углов
Угловые измерения необходимы при развитии триангуляционных се­тей, про­кладывании полигонометрических, теодолитных и высотных ходов, выполнении то­пографических съемок и решении многих геодезически

Основные части теодолита
Основными частями теодолита являются: лимб или горизонтальный круг, алидада, зрительная труба, цилинд­рический уровень, подставки, вертикальный круг, подъемные винты. Лимб (рис.8.3)

Изучение устройства теодолита типа Т30
При изучении устройства теодолита следует обратить внимание на работу наводящих винтов: они должны занимать среднее положение, чтобы была воз­можность перемещения подвижных частей теодолита вправо

Измерение горизонтальных и вертикальных углов
Работа по измерению углов на станции выполняется в следующем порядке: Индекс алидады в)

Порядок работы на станции
- При КЛ, при закрепленном лимбе, поворачивают алидаду, пока по ГК будет отсчет 0°0¢; - при закрепленной алидаде пово

Порядок работы на станции
- При КЛ, при закрепленном лимбе, поворачивают алидаду, пока отсчет по ГК будет 0° 0¢; - при закрепленной алидаде поворачивают лимб, пока центр сетки будет наведен н

Камеральные работы при обработке результатов измерений
а) Обработка журналов. Составление схемы теодолитных ходов Камеральные работы начинают с проверки полевых журналов. Затем на бумаге по средним значениям углов и длинам линий составляют схе

Топографические съемки
Съемка местности – совокупность угловых и линейных измерений, выполняемых на земной поверхности для создания плана, карты или профиля. Съемки делятся на: - наземные (теодолитная,

Нивелирование. Назначение. Методы нивелирования
Нивелирование– процесс геодезических измерений для определения пре­вышения точек одной над другой и высот точек над уровнем моря. Назначение – для определ

Устройство, поверки и юстировка нивелира
а) Устройство нивелиров Линия визирования у нивелира приводится в горизонтальное положение двумя способами: 1) с помощью элевационного винта и цилиндрического уровня при тр

Элементы закруглений. Разбивка главных точек круговой кривой
В местах поворота трассы производят разбивку закруглений. Рис. 9.15. Разбивка главных точек круговой кривой: R- радиус кривой; НК – начало кривой; СК –

Нивелирование трассы
пк0 пк1 пк2

Камеральные работы при трассировании линейных сооружений
1. Проверка полевого журнала: вычисление превышений, средних превышений. Вычисляют сумму превышений по ходу между исходными реперами Σhизм. Теоретическую сумму вычис

Основные элементы разбивочных работ
Разбивочными работами называются геодезические построения, имеющие це­лью определение на местности положения сооружения и его частей в плане и по высоте в соответствии с проектом. Разбивоч

Строительной площадки
Для выноса на местность строительной площадки и основных осей здания (рис. 10.7) прокладывают теодолитный ход с расчетом, что с точек хода будут вынесены площадка и оси здания. Точки хода закрепляю

Передача отметок на дно котлована и на этаж
  а) Передача отметки на этаж а b

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
Основной 1. Федоров, В.И. Инженерная геодезия / В.И. Федоров, П.И. Шилов.– М.: Недра, 1982. 2. Курс инженерной геодезии / Под ред. В.Е. Новака – М.: Недра, 1989. 3. Митин

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги