рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Основные определения

Основные определения - раздел Транспорт, Лекция № 12. НЕОРИЕНТИРОВАННЫЕ ГРАФЫ Граф ...

Граф – это совокупность двух множеств: вершин и ребер , между которыми определено отношение инцидентности.

Каждое ребро e из E инцидентно ровно двум вершинам и , которые оно соединяет. При этом вершина и ребро e называются инцидентными друг другу, а вершины и называются смежными.

Принято обозначение n для числа вершин графа (мощность множества ): и m для числа его ребер: . Говорят, что граф G есть (n, m) граф, где n – порядок графа, m – размер графа.

Если все ребра графа неориентированные, т.е. пары вершин, определяющие элементы множества E, неупорядочены, то такой граф называется неориентированным графом, или неографом. На рис. 12.1 показан пример неографа. Этот граф имеет пять вершин и шесть ребер.

Рис. 12.1

 

Маршрут – последовательность ребер, в которой каждые два соседних ребра имеют общую вершину. Граф связен, если любые две вершины соединены хотя бы одним маршрутом. Число ребер маршрута определяет его длину.

Ребра, инцидентные одной паре вершин, называются параллельными или кратными. Граф с кратными ребрами называется мультиграфом.

Ребро называется петлей (концевые вершины совпадают). Граф, содержащий петли и кратные ребра, называется псевдографом. На рис. 12.2 показан псевдограф.

Рис. 12.2

 

Степень deg(v) вершины – это число ребер, инцидентных v. В неографе сумма степеней всех вершин равна удвоенному числу ребер (лемма о рукопожатиях):

. (12.1)

Петля дает вклад, равный 2, в степень вершины.

Степенная последовательность – последовательность степеней всех вершин графа, записанная в определенном порядке (по возрастанию или убыванию).

Пример 12.1. Степенная последовательность неографа, изображенного на рис. 12.1, записанная по возрастанию, выглядит так:

=1, =2, =3, =3, =3.

Сумма степеней всех вершин графа равна:

.

Этот результат не противоречит лемме о рукопожатиях, поскольку граф имеет шесть ребер (m = 6).

Матрица смежности графа – квадратная матрица A порядка n, где элемент равен числу ребер, соединяющих вершины i и j.

Пример 12.2. Граф, показанный на рис. 12.1, имеет следующую матрицу смежности

.

Матрица инцидентности I – еще один способ описания графа. Число строк этой матрицы равно числу вершин, число столбцов – числу ребер; =1, если вершина v инцидентна ребру e; в противном случае =0. В каждом столбце матрицы инцидентности простого графа (без петель и без кратных ребер) содержится по две единицы. Число единиц в строке равно степени соответствующей вершины.

Пример 12.3. Граф, показанный на рис. 12.1, имеет следующую матрицу инцидентности

.

Граф называется подграфом графа , если и . Если , то подграф называется остовным.

Компонента связности графа – максимальный по включению вершин и ребер связной подграф.

Ранг графа , где k – число компонент связности.

Дерево – связной граф, содержащий n – 1 ребро.

Пример 12.4. На рис. 12.3 показано дерево, которое одновременно является остовным подграфом графа, показанного на рис. 12.1.

Рис. 12.3

 

– Конец работы –

Эта тема принадлежит разделу:

Лекция № 12. НЕОРИЕНТИРОВАННЫЕ ГРАФЫ

Основные определения Каждое ребро e из E инцидентно ровно двум вершинам и... Циклы... Маршрут в котором начало и конец совпадают циклический Циклический маршрут называется циклом если он цепь...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Основные определения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Радиус, диаметр и центр графа
Вычисление расстояний и определение маршрутов в графе являются одной из наиболее очевидных и практичных задач, которые возникают в теории графов. Введем некоторые необходимые определения.

Эйлерова цепь
Маршрут в неографе, в котором все ребра разные, называется цепью. Цепь в графе называется эйлеровой, если она содержит все ребра и все вершины графа.

Реберный граф
Рассмотрим два графа G и L(G). Граф G имеет произвольную форму, а вершины графа L(G) расположены на ребрах графа G. В этом случае граф L(G) называется

Раскраска графа, хроматический полином
Предположим, что перед нами стоит задача: раскрасить карту мира так, чтобы каждая страна имела свой собственный цвет. Поскольку на свете существует несколько сотен государств, то, естественно, потр

Ранг-полином графа
Ранг графа определяется как , где n – число вершин, k – число компонент связности графа. Ко

Основные определения
Ребро в графе G может быть ориентированным и иметь начало и конец. Такое ребро называется

Маршруты в орграфе
Задачи, связанные с маршрутами в орграфе, имеют большое практическое значение, что и дает стимул к развитию и совершенствованию методов их решения. Наиболее часто встает вопрос о минимальных и макс

Транзитивное замыкание
Прямым (декартовым) произведением множеств A и B называется множество

Компоненты сильной связности графа
Понятие сильной связности относится только к орграфам. Основание орграфа – неограф с теми же вершинами, но ребрами вместо соответствующих дуг. Орграф называет

Основные определения
Дерево – связный граф без циклов. Лес (или ациклический граф) – неограф без циклов. Компонентами леса являются деревья.

Центроид дерева
Ветвь к вершине v дерева – это максимальный подграф, содержащий v в качестве висячей вершины. Вес

Десятичная кодировка
Деревья представляют собой важный вид графов. С помощью деревьев описываются базы данных, деревья моделируют алгоритмы и программы, их используют в электротехнике, химии. Одной из актуальных задач

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги