рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Раскраска графа, хроматический полином

Раскраска графа, хроматический полином - раздел Транспорт, Лекция № 12. НЕОРИЕНТИРОВАННЫЕ ГРАФЫ Предположим, Что Перед Нами Стоит Задача: Раскрасить Карту Мира Так, Чтобы Ка...

Предположим, что перед нами стоит задача: раскрасить карту мира так, чтобы каждая страна имела свой собственный цвет. Поскольку на свете существует несколько сотен государств, то, естественно, потребуется достаточно много разных красок.

Упростим задачу. Будем использовать меньшее количество красок, но при этом не будем допускать, чтобы соседние страны, имеющие общие границы, были окрашены в один цвет. Возникает вопрос: какое минимальное количество красок требуется, чтобы удовлетворить этому условию?

Ответить на этот вопрос можно с помощью теории графов. Для этого нужно представить карту мира в виде графа, каждая вершина которого соответствует отдельной стране, а ребро между смежными вершинами соответствует наличию между странами общей границы.

Произвольная функция на множестве вершин графа называется раскраской графа. Раскраска называется правильной, если для любых смежных вершин и . Минимальное число k, при котором граф G является k-раскрашиваемым называется хроматическим числом графа .

Граф называется пустым, если в нем удалены все ребра и вершины изолированы друг от друга. Граф называется полным, если в нем нельзя добавить новое ребро, не добавив при этом одновременно новую вершину.

Теорема 12.7 (Брукса). Для любого графа G, не являющегося полным, , если максимальная из степеней вершин графа.

Для определения количества способов раскраски графа в x цветов, необходимо составить хроматический полином P(G, x). Значение полинома при некотором конкретном равно числу правильных раскрасок графа в цветов.

Существует лемма, утверждающая, что хроматический полином графа имеет вид

, (12.4)

где – граф, полученный из G добавлением ребра (u, v), а граф получается из G отождествлением вершин u и v.

Другой вариант леммы:

, (12.5)

где – граф, полученный из G удалением ребра (u, v), а граф получается из G отождествлением вершин u и v.

Операцию отождествления вершин u и v называют также стягиванием ребра (u, v).

Оба варианта леммы составляют основу для хроматической редукции графа (reduction – «сокращение» на английском). Хроматическая редукция графа – представление графа в виде нескольких пустых или полных графов, сумма хроматических полиномов которых равна хроматическому полиному графа. Очевидно, что хроматический полином пустого графа равен (каждая вершина может быть раскрашена независимо от других), а для полного графа . Последнее выражение называют факториальной степенью переменной x: .

Разложения по пустым и полным графам связаны. Факториальную степень можно представить в виде полинома:

, (12.6)

где – числа Стирлинга первого рода. И наоборот, степень можно выразить через факториальные степени:

, (12.7)

где – числа Стирлинга второго рода, обладающие следующими свойствами:

при , (12.8)

при , при .

При получении хроматического полинома могут быть полезны следующие теоремы.

Теорема 12.8. Коэффициенты хроматического полинома составляют знакопеременную последовательность.

Теорема 12.9. Абсолютная величина второго коэффициента хроматического полинома равна числу ребер графа.

Теорема 12.10. Наименьшее число i, для которого отличен от нуля коэффициент при в хроматическом полиноме графа G, равно числу компонент связности графа G.

Кроме вершинной раскраски, существует еще реберная раскраска и раскраска граней.

Пример 12.7. Найти хроматический полином графа, показанного на рис. 12.8.

Рис. 12.8

 

Решение. В зависимости от числа ребер графа можно использовать разложение (12.4) или (12.5). Если граф почти полный, то, добавив несколько ребер по разложению (12.4), получим хроматический полином в виде суммы факториальных степеней. Если же ребер мало и для получения пустого графа требуется удалить только несколько ребер, то следует использовать разложение (12.5) с удалением ребер. Такие действия называются хроматической редукцией.

1. Хроматическая редукция по пустым графам. Воспользуемся вначале леммой (12.5). Удаляя ребра и отождествляя соответствующие вершины (стягивая ребра), сведем исходный граф к пустым графам. Сначала разложим граф на два, убрав, а затем стянув ребро 1-3. Выполненное действие запишем в виде условного равенства:

Здесь операция вычитания относится не к самому графу, а к его хроматическому полиному. Таким образом, последнее равенство означает, что . Для сокращения записи обозначение P(…) будем опускать. Далее разложим каждый из графов и , пользуясь той же леммой.

Приведем подобные члены:

(12.9)

В итоге получим искомый хроматический полином:

. (12.10)

Разложение (12.9) называется хроматической редукцией графа по пустым графам.

Очевидно, что результат соответствует утверждениям теорем 12.8-12.10. Коэффициенты в (12.10) образуют знакопеременную последовательность, а коэффициент при равен четырем – числу ребер. Наименьшая степень x в полиноме равна 1, т.е. числу компонент связности графа.

2. Хроматическая редукция по полным графам. Добавив к изображенному на рис. 12.8 графу ребро 1–4, получим граф с большим числом ребер. Затем в исходном графе отождествим вершины 1 и 4. В результате получим два графа.

Отождествление вершин приводит к уменьшению порядка и иногда размера графа. Второй граф – это полный граф , его преобразовывать больше не требуется. К первому графу добавим ребро 1–2 и отождествим вершины 1 и 2:

В итоге получим

(12.11)

Хроматический полином примет вид

(12.12)

Разложение (12.11) называется хроматической редукцией графа по полным графам.

Оба способа дали один результат, и из редукции по полным графам легко получить редукцию по пустым. Для этого достаточно раскрыть скобки и привести подобные члены, как в (12.12). Однако обратное действие не очевидно. Для того чтобы полином , полученный из пустых графов, выразить в виде суммы факториальных степеней, необходимы числа Стирлинга 2-го рода. Согласно рекуррентным формулам (12.8) имеем следующие числа:

,

,

,

.

Пользуясь (12.7) и найденными числами Стирлинга 2-го рода, получим

,

,

.

Произведем преобразование хроматического полинома:

Хроматическое число графа лучше всего получить, разложив хроматический полином на множители:

.

Минимальное натуральное число x, при котором не обращается в нуль, равно 3. Отсюда следует . Так как максимальная степень вершин графа , выполняется оценка .

 

– Конец работы –

Эта тема принадлежит разделу:

Лекция № 12. НЕОРИЕНТИРОВАННЫЕ ГРАФЫ

Основные определения Каждое ребро e из E инцидентно ровно двум вершинам и... Циклы... Маршрут в котором начало и конец совпадают циклический Циклический маршрут называется циклом если он цепь...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Раскраска графа, хроматический полином

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные определения
Граф – это совокупность двух множеств: вершин

Радиус, диаметр и центр графа
Вычисление расстояний и определение маршрутов в графе являются одной из наиболее очевидных и практичных задач, которые возникают в теории графов. Введем некоторые необходимые определения.

Эйлерова цепь
Маршрут в неографе, в котором все ребра разные, называется цепью. Цепь в графе называется эйлеровой, если она содержит все ребра и все вершины графа.

Реберный граф
Рассмотрим два графа G и L(G). Граф G имеет произвольную форму, а вершины графа L(G) расположены на ребрах графа G. В этом случае граф L(G) называется

Ранг-полином графа
Ранг графа определяется как , где n – число вершин, k – число компонент связности графа. Ко

Основные определения
Ребро в графе G может быть ориентированным и иметь начало и конец. Такое ребро называется

Маршруты в орграфе
Задачи, связанные с маршрутами в орграфе, имеют большое практическое значение, что и дает стимул к развитию и совершенствованию методов их решения. Наиболее часто встает вопрос о минимальных и макс

Транзитивное замыкание
Прямым (декартовым) произведением множеств A и B называется множество

Компоненты сильной связности графа
Понятие сильной связности относится только к орграфам. Основание орграфа – неограф с теми же вершинами, но ребрами вместо соответствующих дуг. Орграф называет

Основные определения
Дерево – связный граф без циклов. Лес (или ациклический граф) – неограф без циклов. Компонентами леса являются деревья.

Центроид дерева
Ветвь к вершине v дерева – это максимальный подграф, содержащий v в качестве висячей вершины. Вес

Десятичная кодировка
Деревья представляют собой важный вид графов. С помощью деревьев описываются базы данных, деревья моделируют алгоритмы и программы, их используют в электротехнике, химии. Одной из актуальных задач

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги