рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Регуляция биосинтеза белка

Регуляция биосинтеза белка - раздел Медицина, БИОХИМИЯ И ЕЁ ЗАДАЧИ Клетки Многоклеточного Организма Содержат Одинаковый Набор Днк, Но Белки Синт...

Клетки многоклеточного организма содержат одинаковый набор ДНК, но белки синтезируются разные. Например, соединительная ткань активно синтезирует коллаген, а в мышечных клетках такого белка нет. В эритроцитах содержится Нb, и информация о Нb содержится во всех клетках. С возрастом скорость синтеза изменяется.

 

Прокариоты.

Теория регуляции биосинтеза у прокариот была разработана в 1961 г. Ф. Жакобом и Ж. Моно. Основные положения теории:

1. неоднородность генетического материала. В геноме имеются:

- структурные гены, которые кодируют синтез структурных белков или ферментов;

- регуляторные гены. Обеспечивают регуляцию считывания информации со структурных генов.

2. регуляция биосинтеза происходит на этапе транскрипции;

3. регуляция осуществляется путем репрессии (подавление транскрипции) и индукции (разрешение транскрипции).

Пр.: работа лактозного оперона.

В клетках микробов имеется фермент лактаза, участвующий в расщеплении лактозы до галактозы и глюкозы. Этот фермент в их клетках вырабатывается только при наличии субстрата – лактозы. Регуляция осуществляется с помощью лактозного оперона. Так, если в среде нет лактозы, то ген-I кодирует синтез белка-репрессора. Белок-репрессор взаимодействует с оператором и в результате РНК-полимераза не может осуществлять транскрипцию. Этот тип регуляции называется репрессией.

Если в среде присутствует лактоза, то она препятствует взаимодействию белка-репрессора с операторм, РНК-полимераза считывает информацию и образуется мРНК лактазы. Т.о. лактоза является индуктором, т.е. веществом, препятствующим взаимодействию белка-репрессора с оператором, в результате чего усиливается и облегчается транскрипция гена лактазы.

У прокариот первичные транскрипты генов (мРНК) используются в синтезе белка еще до завершения процесса транскрипции. У них нет ядерной мембраны.

 

Эукариоты.

Основные уровни регуляции биосинтеза:

1. на уровне транскрипции. Варианты:

- групповая репрессия генов белками – гистонами;

- амплификация генов - увеличение числа копий заданного участка ДНК или гена. Достигается в результате многократного синтеза ДНК в одном и том же репликативном пузыре. В этом случае транскрипция будет возможна сразу с нескольких копий гена, что увеличивается скорость транскрипции. Эта регуляция изучается у опухолевых клеток, которые способны к амлификации;

- регуляция сигналами-усилителями. Сигналы-усилители - энхансеры - выступающий участок ДНК, который может быть значительно удален от промотора. Под действием энхансера наблюдается более чем 200-кратное увеличение скорости транскрипции. Действует неспецифично, усиливая транскрипцию многих генов.

Пр.: действие гормонов коры надпочечников: глюкокортикоиды проникают внутрь клетки, где взаимодействуют с рецептором, посредством чего проникают в ядро, где присоединяются к ДНК и превращают участок ДНК в энхансер. При этом запускается синтез ферментов, характерных для действия глюкокортикоидов. Данный механизм работает только у эукариот.

2. регуляция на уровне процессинга иРНК:

- разрешение или запрещение процессинга. Так, не все пре-иРНК превращаются в зрелые иРНК: пре-иРНК ®иРНК;

- дифференциальный (альтернативный) процессинг. В клетках эукариот возможен многовариантный процессинг, поэтому утверждение 1 ген®1 белок для них не всегда справедливо. Это происходит в результате потери некоторых экзонов.

Пр.: С-клетки щитовидной железы и нейроны имеют одинаковый ген, который в С-клетках кодирует выработку кальцитонина (регулирует уровень Са2+), а в нейронах дифференцирует процессинг белка CGRP-пептид (регулирует АД).

3. на уровне стабильности и активности иРНК. Чем больше иРНК находится в стабильном состоянии в цитоплазме, тем большее количество молекул белка на ней может быть синтезировано. Поэтому в цитоплазме иРНК консервируются путем взаимодействия с белками-информатионами, образуя комплексы - информосомы.

4. регуляция на уровне трансляции:

- тотальная репрессия или активация трансляции при изменении активности и количества белковых факторов (ФИ и ФЭ);

- избирательная дискриминация иРНК, например, при инфицировании клетки вирусом транслируется вирусная РНК, а РНК хозяина дискриминируется.

- механизм повышения эффективности трансляции включает образование полисом - это комплекс нескольких рибосом с одной иРНК. Расстояние между соседними рибосомами составляет 80 нуклеотидов.

Нарушения матричных биосинтезов

ДНК человека содержит около 3 млрд. нуклеотидов. Точность их копирования зависит от точности: а) репликации, б) транскрипции, в) трансляции.

Факторы нарушения структуры ДНК: УФО, ионизация, химические агенты, спонтанные изменения (при фоновых излучениях).

Чаще всего происходит депуринизация (50'000 нуклеотидов за 70 лет жизни) – 40% всех пуриновых нуклеотидов (за 70 лет). Реже – дезаминирование и депиримидирование.

Этим процессам препятствуют процессы репарации ДНК. Т.о., постоянство информации поддерживается с помощью репликации и репарации.

Изменчивость генотипа наблюдается в результате мутаций. Их молекулярной основой является нерепаративное изменение первичной структуры ДНК. Напр., при действии азотной к-ты изменяются Ц→У, Ц→Г, У→А – эти изменения репаративная система "не замечает".

 

Система репарации ДНК

Репаративная система состоит из трех ферментов: (1) эндонуклеаза, (2) экзонуклеаза, (3) ДНК-полимераза (репарирующая).

Механизм репарации ДНК:

1. ДНК-эндонуклеаза обнаруживает участок повреждения и вызывает в этом месте разрыв фосфодиэфирных связей.

2. ДНК-экзонуклеаза отщепляет с образовавшихся концов нуклеотиды, в том числе и поврежденные.

3. ДНК-полимераза репарирующая восстанавли­вает нуклеотиды по принципу комплементарности.

 

Генные мутации

Они затрагивают небольшие участки ДНК (на уровне генов). Виды генных мутаций:

1. Замена нуклеотидов или кодонов. Замена одного нуклеотида – точечная мутация.

1.1. Замена нуклеотида без изменения смысла кодона. Напр., ААА (лиз)→ ААГ (лиз)

1.2. Замена нуклеотида с изменением смысла кодона. Напр., ААГ (лиз)→ ГАГ (глу). Это миссенс-мутация.

1.3. Замена с образованием терминирующего кодона. Напр., ААА (лиз)→ УАА (обрыв транскрипции). Это нонсенс-мутация.

2. Вставка.

2.1. Вставка одного или нескольких кодонов (т.е. триплетов), при этом не происходит сдвига рамки считывания. Напр., ААА ГЦА ГГА ЦЦА → ААА ГАГ ГЦА ГГА ЦЦА. В белке появляется одна или несколько "лишних" АК.

2.2. Вставка 1, 2 и др., но не кратного трем кол-ва нуклеотидов. Происходит сдвиг рамки считывания. Напр., ААА ГЦА ГГА ЦЦА → ААА ГАГ ЦАГ ГАЦ ЦА… Получается пептид со случайной аминокислотной последовательностью.

3.Делеция.

3.1. Выпадение одного или нескольких кодонов. Нет сдвига рамки считывания. Образуется белок, укороченный на одну или несколько АК.

3.2. Выпадение нуклеотидов 1, 2, но не кратного трем кол-ва. Сдвиг рамки считывания. Синтезируется пептид со случайной последовательностью АК.

 

Мутации, возникающие в половых клетках, передаются по наследству. Мутации соматических клеток могут приводить к раковому преобразованию клетки.

По биологическим последствиям мутации:

ü молчающие – не проявляются в обычных физиологических условиях, а проявляются в экстремальных условиях.

ü нейтральные – формируется нормальный белок (напр., при замене ГЛУ на АСП).

ü вредные (патогенные) – приводят к заболеванию (напр., при замене в гемоглобине в 6-м положении АК ГЛУ на ВАЛ развивается серповидно-клеточная анемия.

ü полезные – способствуют лучшей адаптации.

 

Ингибиторы матричных биосинтезов (Антибиотики)

а) ингибиторы, модифицирующие матрицы,

б) модифицирующие рибосомы,

в) инактивирующие ферменты.

Ингибиторы трансляции применяются против прокариот (это антибактериальные препараты). К ингибиторам транскрипции и репликации чувствительны и прокариоты, и эукариоты – они используются для подавления злокачественного роста. Напр., флеомицин, связываясь с ДНК, подавляет репликацию; актиномицин Д ингибирует транскрипцию; митомицин образует ковалентные связи с ДНК (нарушает и транскрипцию, и репликацию). Они подавляют биосинтез во всех клетках.

Антибактериальные

Стрептомицин нарушает структуру рибосом.

Тетрациклин нарушает связывание аминоацил-тРНК с рибосомами.

Эритромицин нарушает образование пептидных связей, нарушает конформацию 50S-субъединицы рибосом.

 

Биохимический полиморфизм

В результате мутаций возникают различные варианты генов. Если эти варианты не летальны, то они наследуются. Так формируется генотипическая неоднородность (гетерогенность). Это ведет к фенотипической неоднородности. Следствием генотипической неоднородности является полиморфизм белков – это существование разных форм белка, выполняющих одинаковые функции, но отличающихся по физико-химическим свойствам (и по первичной структуре).

Это изобелки, в т.ч. изоферменты.

Так, известно более 300 вариантов гемоглобина, 30 вариантов глюкозо-6-фосфат-ДГ, 14 вариантов альфа1-антитрипсина, 30 вариантов А,В-белков групп крови, 10 вариантов алкоголь-ДГ и ацетальдегид-ДГ.

Биохимический полиморфизм настолько велик, что в настоящее время говорят о биохимической индивидуальности.

Биохимический полиморфизм лежит в основе предрасположенности к заболеваниям (напр., атеросклерозу, алкоголизму, сахарному диабету), непереносимости некоторых пищевых компонентов (напр., лактозы – 15% европейцев, 80% азиатов), непереносимости лекарственных препаратов (напр., непереносимости препарата дитилина при сниженной активности холинэстеразы – дитилин используют при бронхиальной астме).

 

Биологические последствия обратной транскрипции

В молекулярной биологии принят основной постулат: ДНК → мРНК → белок. Однако, в 1970-е гг. Тёмин открыл фермент обратную транскриптазу (или ревертазу), катализирующую процесс обратной транскрипции (мРНК → кДНК - комплементарная ДНК). Этот процесс характерен для РНК-содержащих вирусов (ретровирусов), в которых имеется ревертаза, напр., для ВИЧ.

Обратная транскрипция заключается в синтезе короткого фрагмента ДНК, используя мРНК в качестве матрицы. Эта вирусная ДНК внедряется в ДНК хозяина (интеграция), что может приводить к образованию новых вирусных частиц. Интеграция беспорядочна и может привести (1) к мутациям, (2) к образованию онкогенов, (3) к усиленной работе эмбриональных генов (которые в норме во взрослом организме не функционируют).

 

Теломеры и теломеразы

Метод культуры клеток in vitro широко распространен. Если в эти условия поставить опухолевые клетки, то они делятся бесконечно долго – иммортализованные клетки. Нормальные клетки делятся ограниченное количество раз (это установил Л.Хэйфлик), есть предел деления – лимит Хэйфлика.

Напр., клетка новорожденного может делиться митозом 80-90 раз, взрослого – 60-70 раз, стариков – 20-30 раз, затем репликация нарушается и клетка гибнет.

В 1998 г. американские ученые смогли заставить нормальные клетки делить в 2 раза больше лимита Хэйфлика. В этом участвовали вещества теломеры и ферменты теломеразы.

Теломеры – это специализированные концевые районы хромосомной ДНК, состоящие из многократно повторяющихся коротких нуклеотидных последовательностей. Предполагалось, что эти вещества состоят из 6-8 нуклеотидов: TTAGGG – этот блок повторяется многократно, в результате длина их составляет 2-20 тысяч пар оснований.

Во время репликации в структуре ДНК имеется праймер – короткий РНК-олигонуклеотид, к которому присоединяется ДНК-полимераза. С этого места начинается репликация. Затем происходит удаление праймера и 5'-конец оказывается короче 3'-конца. Возникает эффект недорепликации (Оловников). Образовавшиеся нити ДНК наращиваются с помощью теломеразы. Теломераза синтезирует теломеры. Теломераза – РНК-содержащий фермент, она синтезирует по принципу обратной транскрипции концевой участок, а ДНК-полимераза наращивает другую цепь.

Т.к. теломераза синтезирует теломеры, то она повышает длительность жизни клетки. Повышенная активность теломераз делает клетку бессмертной. Активность теломеразы в различных клетках различна. По активности теломераз выделяют:

1. Соматические клетки. Теломеры их содержат 10-12 тысяч пар нуклеотидов и отсутствует теломеразная активность. Но в макрофагах и лейкоцитах теломераза активна.

2. Половые клетки. Теломеразная активность высокая, теломеры содержат больше – 15-20 тысяч –пар нуклеотидов. То же и в стволовых клетках.

3. Раковые клетки. Длина теломер не очень большая (8-10 тысяч пар нуклеотидов), но высокая теломеразная активность (у 80% раковых клеток).

Т.о., современная биохимия имеет задачей:

а) увеличение теломеразной активности в отдельных клетках, напр., в клетках кожи для восстановления ее после ожогов;

б) снижение теломеразной активности в раковых клетках.

 

Патология белкового обмена

Нарушения обмена белков могут наблюдаться на различных этапах:

1. На этапе поступления питательных белков в организм. В сутки человеку требуется около 100 г белка. Т.к. белки содержат незаменимые АК, то недостаточное поступление их ведет к снижению или даже к отсутствию синтеза белков в организме.

Напр., недостаток:

ЛИЗ – тошнота, головокружение, повышенная чувствительность к шуму; недостаток

ТРИ – снижение массы тела, гипопротеинемия;

ГИС – снижение гемоглобина в крови;

МЕТ – развитие жирового перерождения печени и почек.

Общее снижение кол-ва белка → белковая недостаточность → отрицательный азотистый баланс, гипопротеинемия.

Тяжелая форма белковой недостаточности – квашиоркор. Сначала снижается общий белок, снижение альбумина ведет к отекам (из-за изменения онкотического давления), снижение гемоглобина ведет к анемии, а само снижение синтеза белка приводит к гипераминоацидемии (повышение АК в крови) и к аминоацидурии. Также снижается синтез ферментов поджелудочной железой (трипсин, химотрипсин, полипептидазы – тоже белки), что ведет к снижению усвоения белка в кишечнике.

2. Нарушение на этапе пищеварения.

2.1. В желудке. Возможна гипоацидитас и анацидитас – ахлоргидрия (снижение и отсутствие кислотности в желудке соответственно). При ахлоргидрии начинается гниение белков.

Гиперацидитас – усвоение белка не нарушается, но может быть поражение слизистой желудка, переходящее в язву.

2.2. В тонкой кишке. Нарушение усвоения белка при панкреатитах, снижении секреции трипсина, химотрипсина.

2.3. В толстой кишке. Повышение процессов гниения белка, напр., при запорах, непроходимости кишечника.

3. Нарушение обмена белков в тканях, т.е. на уровне межуточного обмена. Может быть связано нарушением обмена АК.

3.1. Приобретенные нарушения обмена связаны с дефицитом витаминов; особенно В6 – нарушение процессов переаминирования и дезаминирования АК, развивается аминоацидурия. Либо связаны с гормональными нарушениями обмена АК.

3.2. Наследственные нарушения обмена АК.

Пример 1: в норме фенилаланин (ФЕН) под действием фенилаланингидроксилазы (ФАГ) окисляется кисло­родом до тирозина (ТИР).

При наследственной патологии (нарушении образования ФАГ) ФЕН накапливается в тканях и затем превращается в фенилпируват, который может превращаться в фениллактат или в фенилацетат. Они накапливаются в тканях и выделяются с мочой (фенилкетонурия). Эти соединения токсичны для ткани мозга, их накопление вызывает нарушения физического и умственного развития. При дефиците ФАГ развивается фенилпировиноградная олигофрения. Если она развилась по гомозиготному типу, то ребенок умственно отсталый и нуждается в помещение в специализированное учреждение. Необходима ранняя диагностика фенилкетонурии (первые 7-10 дней после рождения). Если ребенку ставится этот диагноз, то ему назначается диета, обедненная фенилаланином. Диета сохраняется до 16-18 лет (средний уровень развития).

Пример 2: Генетические нарушения обмена тирозина (ТИР). В организме ТИР образуется из ФЕН (катализируется ФАГ). Затем ТИР может превращаться: (1) в меланин, (2) в тиреоидные гормоны, (3) в ДОФА, а затем в адреналин, (4) в гомогентизиновую к-ту, а затем в конечные продукты (в мочу). Если нарушается блок "ТИР → меланин" (катализируется тирозиназой), то наблюдается альбинизм (отсутствие пигмента кожи меланина). Если блок "гомогентизиновая к-та → конечные продукты" (катализируется оксидазой в присутствии аскорбиновой к-ты), то наблюдается алкаптонурия: моча приобретает темно-бурую окраску, вплоть до черной). Также алкаптонурия может быть приобретенной – при авитаминозе С.

Пример 3: Гистидинемия – повышение ГИС в крови. В норме ГИС под действием гистидазы превращается в уроканиновую к-ту (5-формимино­тетрагидрофолиевую к-ту). Накапливающийся ГИС приводит к нарушению умственного и физического развития.

4. Нарушения на стадии биосинтеза белка. Чаще всего наблюдается усиленный синтез белка к.-л. клеткой (злокачественное новообразование).

 

– Конец работы –

Эта тема принадлежит разделу:

БИОХИМИЯ И ЕЁ ЗАДАЧИ

На сайте allrefs.net читайте: "БИОХИМИЯ И ЕЁ ЗАДАЧИ"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Регуляция биосинтеза белка

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Белки и их биологическая роль
Белок (протеины) – protos – предшествующий всему, первичный, наиглавнейший, определяющий всё остальное. Белки – это высокомолекулярные азотсодержащие органические вещества, состо

Характеристика простых белков
В основе классификации (создана в 1908г.) лежит растворимость белков. По этому признаку выделяют: I. гистоныипротамины, растворимые в солевых растворах. О

Хромопротеины
Для них простетическая часть окрашена (chromos – краска). К хромопротеинам относятся гемоглобин, миоглобин, каталаза, пероксидаза, ряд флавинсодержащих ферментов (сукцинатдегидрогеназа, альдегидокс

Липид-белковые комплексы
Липид-белковые комплексы – сложные белки, простетическую часть которых составляют различные липидные компоненты. К таким компонентам относятся: 1. предельные и непредельные В

Нуклеопротеины
Нуклеопротеины – это сложные белки, содержащие в качестве небольшой части нуклеиновые кислоты (до 65%). НП состоят из 2-х частей: белковой (содержит гистоны и протамины, кото

Углевод-белковые комплексы
В качестве простетической группы выступают углеводы. Все углевод-белковые комплексы делятся на гликопротеины и протеогликаны. Гликопротеины (ГП)– комплекс белков с углеводными ко

Фосфопротеины
Белки, где в качестве простетической группы – фосфорная кислота. Присоединение фосфорной кислоты к полипептидной цепи идет с образованием сложноэфирной связи с АК СЕР или ТРЕ.

Строение коферментов
Коферменты в каталитических реакциях осуществляют транспорт различных групп атомов, электронов или протонов. Коферменты связываются с ферментами: - ковалентными связями; - ионными

Изоферменты
Изоферменты – это изофункциональные белки. Они катализируют одну и ту же реакцию, но отличаются по некоторым функциональным свойствам в силу отличий по: - аминокислотному составу;

Свойства ферментов
Общие черты ферментов и небиологических катализаторов: 1) и те, и другие катализируют только энергетически возможные реакции; 2) увеличивают скорость реакции; 3) н

Номенклатура ферментов
1) Существует тривиальная номенклатура – названия случайные, без системы и основания, например трипсин, пепсин, химотрипсин. 2) Рабочая номенклатура – название фермента составляется из наз

Современные представления о ферментативном катализе
Первая теория ферментативного катализа была выдвинута в начале 20 века Варбургом и Бейлисом. Эта теория предлагала считать, что фермент адсорбирует на себе субстрат, и называлась адсорбционной, но

Молекулярные эффекты действия ферментов
1) Эффект концентрирования – это адсорбирование на поверхности молекулы фермента молекул реагирующих веществ, т.е. субстрата, что приводит к их лучшему взаимодействию. Пр.: электростатическое притя

Теория кислотно-основного катализа
В составе активного центра фермента имеются как кислые, так и основные функциональные группы. В результате этого фермент проявляет в ходе катализа кислотно-основные свойства, т.е. играет как роль д

Регуляция активности ферментов
Ферменты являются регулируемыми катализаторами. В качестве регуляторов могут выступать метаболиты, яды. Различают: - активаторы – вещества, увеличивающие скорость реакции;

Переваривание и всасывание белков
Функции белков многообразны, но особенно выделяются структурная, каталитическая и энергетическая функции. Энергетическая ценность белка около 4,1 ккал/г. Среди всех веществ, поступающих в

Превращение белков в органах пищеварения
Все белки подвергаются действию гидролаз (третий класс ферментов), а именно пептидаз – они, как правило, вырабатываются в неактивной форме, а затем активируются путем частичного протеолиза.

Переваривание сложных белков и их катаболизм
1. Гликопротеины гидролизуются с помощью гликозидаз (амилолитических ферментов). 2. Липопротеины – с помощью липолитических ферментов. 3. Гемсодержащие хромопроте

Гниение белков и обезвреживание его продуктов
Гниение белков – это бактериальный распад белковых веществ и АК под действием микрофлоры кишечника. Идет в толстой кишке, однако может наблюдаться и в желудке – при снижении кислотнос

Метаболизм аминокислот
Фонд АК организма пополняется за счет процессов: 1) гидролиза белков пищи, 2) гидролиза тканевых белков (под действием катепсинов лизосом). Расходуется АК-фонд на процесс

Общие пути обмена веществ
1. Переаминирование (открыто в 1937 г. Браунштейном и Крицмом).

Временное обезвреживание аммиака
Аммиак токсичен (50 мг аммиака убивает кролика, при этом [NH3]=0,4-0,7 мг/л). Поэтому в тканях аммиак обезвреживается временными путями: 1) в основном – образов

Орнитиновый цикл мочевинообразования
Мочевина содержит 80-90% всего азота мочи. В сутки образуется 25-30 г мочевины NH2-CO-NH2. 1. NH3 + CO

Синтез и распад нуклеотидов
Особенности обмена нуклеотидов: 1. Ни сами нуклеотиды, ни азотистые основания, поступающие с пищей, не включаются в синтез нуклеиновых кислот и нуклеотидов организма. Т.е., нуклеотиды пищи

А. Окисление пуриновых нуклеозидов
Аденозин® (аденозиндезаминаза, +Н2О, –NH4+) инозин® (пуриннуклеозидфосфорилаза, +Фн –рибозил-1-Ф) гипоксантин (6-оксопурин) ® (ксантинокси

Функционирование ДЦ
Субстрат·Н2 → НАД → ФМН → КоQ → 2b → 2c1→ 2c → 2a → 2a3 → O

Репликация (самоудвоение, биосинтез) ДНК
В 1953 г. Уотсон и Крик открыли принцип комплементарности (взаимодополняемости). Так, А=Т, а ГºЦ.   Условия, необходимые для репликации: 1. стр

Транскрипция (передача информации с ДНК на РНК) или биосинтез РНК
При транскрипции, в отличие от репликации, информации передается с небольшого участка ДНК. Элементарной единицей транскрипции является оперон (транскриптон)- участок ДНК, подвергающийся тран

Механизмы развития раковой опухоли
Рак – генетическое заболевание, т.е. повреждение генов. Виды повреждений генов: 1) потеря гена, 2) собственно повреждение гена, 3) активация гена,

Переваривание липидов
Поступая с пищей, липиды в ротовой полости подвергаются только механической обработке. Липолитические ферменты в ротовой полости не образуются. Переваривание липидов будет происходить в тех отделах

Механизм ресинтеза жира
Ресинтез жира в стенке кишечника происходит следующим образом: 1. сначала продукты гидролиза (глицерин, ВЖК) активируются с использованием АТФ. Далее происходит последовательное ацилирован

Транспортные формы липидов в организме
Липиды являются нерастворимыми в воде соединениями, поэтому для их переноса кровью необходимы специальные переносчики, растворимые в воде. Такими транспортными формами являются липопротеины плазмы

Превращение липидов в тканях
В тканях постоянно идут процессы распада и синтеза липидов. Основную массу липидов организма человека составляют ТГ, которые в клетке имеются в виде включений. Период обновления ТГ в разных тканях

Биосинтез глицерина и ВЖК в тканях
Биосинтез глицерина в тканях тесно связан с метаболизмом глюкозы, которая в результате катаболизма проходит стадии образования триоз. Глицеральдегид–3–фосфат в цитоплазме по

Патология липидного обмена
На этапе поступления с пищей. Обильная жирная пища на фоне гиподинамии ведёт к развитию алиментарного ожирения. Нарушение обмена может быть связано с недостаточным поступлением жир

Ионы Са2+.
Образуют соединение с белком - кальмодулин. Комплекс Са2+-кальмодулин активирует ферменты (аденилатциклазу, фосфодиэстеразу, Са2+-зависимую протеинкиназу). Есть группа

Гормоны паращитовидных желез
Парат-гормон, состоит из 84 АК, регулирует уровень Са2+, стимулирует выход кальция (и фосфора) из костей в кровь; Повышают реабсорбцию кальция в почках, но стимулируется выход фосфора; С

Роль витаминов в обмене веществ
1.(!) витамины – предшественники коферментов и простетических групп ферментов. Напр., В1 – тиамин – входит в состав кофермента декарбоксилаз кетокислот в виде ТПФ (ТДФ), В2 – рибофлавин –

Понятие о гиповитаминозах, авитаминозах и гипервитаминозах
Гиповитаминоз – патологическое состояние, связанное с недостатком витамина в организме. Авитаминоз – патологическое состояние, вызванное отсутствием витамина в организме.

Причины гиповитаминозов
1. Первичные: недостаток витамина в пище. 2. Вторичные: а) снижение аппетита; б) повышенный расход витаминов; в) нарушения всасывания и утилизации, напр., энтеро

Витамин А
Витамеры: А1 – ретинол и А2 – ретиналь. Клиническое название: антиксерофтальмический витамин. По химической природе: циклический непредельный одноатомный спирт на основе кольца b-

Витамин D
Антирахитический витамин. Существуют два витамера: D2 – эргокальциферол и D3 – холекальциферол. Витамин D2 содержится в грибах. Витамин D3 синтезируется в орг

Витамин Е
Устар.: антистерильный витамин, антиоксидантный энзим. В химическом плане это альфа-, бета-, гамма- и дельта-токоферолы, но преобладающим является альфа-токоферол. Витамин Е устой

Витамин К
Антигеморрагический витамин. Витамеры: К1 – филлохинон и К2 – менахинон. Роль витамина К в обмене веществ Это кофактор карбоксилирования глутамино

Витамин С
Аскорбиновая кислота, антискорбутный витамин (скорбут = цинга). Является лактоном. Легко окисляется: О=С─┐ О=С─┐ | │ | │ НО-С

Витамин В1
Тиамин, антиневритный витамин. Тиамин устойчив в кислой среде (до 140ºС), а в щелочной среде бы

Витамин В2
Рибофлавин Устойчив в кислой среде, но разрушается в нейтральной и щелочной. Легко окисляется по дво

Витамин РР
Антипеллагрический витамин. Витамеры: никотиновая к-та, никотинамид, ниацин.

Витамин В6
Антидерматитный витамин. Пиридоксин → пиридоксаль → пиридоксамин [нарисовать формулы]

Витамин В12
Кобаламин. Антианемический витамин. Имеет красный цвет. На свету разлагается. Роль кобаламина в обмене веществ - транспорт метильных групп; - участвует в

Витамин В3
Пантотеновая кислота. [рис. формулы НОСН2-С((СН3)2)-СН(ОН)-СО-NH-СН2-СН2-СООН] Состоит из масляной кислоты с b-аланином.

Гидроксилирование ксенобиотиков с участием микросомальной монооксигеназной системы
1. бензола: [рис. бензол+ О2 +НАДФН2®(гидроксилаза, цитохром Р450) фенол + НАДФ+ Н2О] 2. индола: [рис. индол+ О2 +Н

Роль печени в пигментном обмене
Пигментный обмен представляет собой совокупность сложных взаимопревращений окрашенных веществ тканей и жидкостей организма человека. К пигментам относятся 4 группы веществ: 1. гем

Биосинтез гема
Биосинтез гема идет в большинстве тканей, за исключением эритроцитов, которые не имеют митохондрий. В организме человека гем синтезируется из глицина и сукцинил-КоА, образованного в результате мета

Распад гема
Большая часть гемхромагенных пигментов в организме человека образуется при распаде гема. Главным источником гема является гемоглобин. В эритроцитах содержание гемоглобина составляет 80%, время жизн

Патология пигментного обмена
Как правило, связана с нарушением процессов катаболизма гема и выражается гипербилирубинемией и проявляется в желтушечности кожи и видимых слизистых оболочек. Накапливаясь в ЦНС, билирубин вызывает

Типы изменения биохимического состава крови
I. Абсолютные и относительные. Абсолютные обусловлены нарушением синтеза, распада, выведения того или иного соединения. Относительные обусловлены изменением объема ц

Белковый состав крови
Функции белков крови: 1. поддерживают онкотическое давление (в основном за счет альбуминов); 2. определяют вязкость плазмы крови (в основном за счет альбуминов);

Общий белок
В норме общий белок крови 65-85 г/л. Общий белок – это сумма всех белковых веществ крови. ► Гипопротеинемия – снижение альбуминов. Причины:

Глобулины в норме 20-30 г/л
I. α1 -глобулины α-антитрипсин – ингибирует трипсин, пепсин, эластазу, некоторые другие протеазы крови. Выполняет антивоспалитель

Остаточный азот
Остаточный азот – это сумма азота всех небелковых азотсодержащих веществ крови. В норме 14-28 ммоль/л. 1. Метаболиты: 1.1. аминокислоты (25%); 1.2. креат

Углеводный обмен
Глюкоза в капиллярной крови натощак 3,3-5,5 ммоль/л. 1. Гипергликемия (повышение глюкозы): 1.1. панкреатическая гипергликемия – при отсутствии инсул

Липидный обмен
Холестерин в норме 3-5,2 ммоль/л. В плазме находится в составе ЛПНП, ЛПОНП (атерогенные фракции) и ЛПВП (антиатерогенная фракция). Вероятность развития атеросклероза

Минеральный обмен
Натрий – это основной внеклеточный ион. На уровень Na+ в крови влияют минералокортикоиды (альдостерон задерживает натрий в почках). Уровень натрия увеличивается за счет гем

Ферменты плазмы крови
Классифицируются: 1. Функционирующие ферменты (собственно плазменные). Напр., ренин (повышает АД через ангиотензин II), холинестераза (расщепляет ацетилхолин). Их активность выше в

Физические свойства мочи здорового человека, их изменения при патологии
I. Количество мочи в норме 1,2-1,5 л. ► Полиурия – увеличение количества мочи из-за: 1) увеличения фильтрации (под действием адреналина увеличивается фи

Показатели химического состава мочи
Общий азот – это совокупность азота всех азотсодержащих веществ в моче. В норме – 10-16 г/сутки. При патологиях общий азот может: ü увеличиваться – гиперазотурия

Особенности обмена веществ в нервной ткани
Энергетический обмен. В ткани головного мозга увеличено клеточное дыхание (преобладают аэробные процессы). Мозг потребляет большее количество кислорода, чем постоянно работающее сер

Химическая передача нервного возбуждения
Передача возбуждения с одной клетки на другую происходит с помощью нейромедиаторов: - нейропептидов; - АК; - ацетилхолина; - биогенных аминов (адреналин,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги