рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Регуляция инициации трансляции

Регуляция инициации трансляции - раздел Медицина, Экспрессия генов Инициация, Т.е. Сборка Компонентов Системы Трансляции На 5'-Конце Мрнк, Завер...

Инициация, т.е. сборка компонентов системы трансляции на 5'-конце мРНК, завершающаяся образованием первой пептидной связи, является важнейшей точкой приложения регуляторных воздействий на уровне трансляции. Эффективность инициации биосинтеза белка изменяется под действием различных гормонов, факторов роста и цитокинов, при изменении доступности питательных веществ и в условиях стрессовых состояний эукариотических клеток. Ключевую роль в этом играют факторы инициации трансляции eIF4E и eIF2.

Участие фактора инициации трансляции eIF4E в регуляции биосинтеза белка. Фактор eIF4E распознает кэп-структуры мРНК в составе многокомпонентного фактора инициации eIF4F, что является необходимым этапом объединения мРНК с 40S субчастицей рибосом (подробнее см. раздел 2.5.2). Фактор eIF4E лимитирует инициацию трансляции. В большинстве клеток он присутствует в количестве 0,01–0,2 молекулы/рибосому, тогда как внутриклеточное содержание других факторов находится в пределах 0,5–3 молекулы/рибосому. Внутриклеточное содержание и активность фактора eIF4E регулируются на уровне транскрипции, посттрансляционно и путем взаимодействия с белками-репрессорами.

Регуляция биосинтеза eIF4E на уровне транскрипции. В ответ на действие сыворотки или факторов роста происходит многократное возрастание внутриклеточного содержания eIF4E-мРНК. Промотор гена этого фактора содержит два сайта связывания фактора транскрипции Myc, которые функционируют в искусственных гибридных генах. В соответствии с этим повышенный уровень экспрессии гена c-myc сопровождается возрастанием внутриклеточного содержания eIF4E-мРНК. Известно, что белок Myc участвует в регуляции пролиферации клеток. Поскольку фактор eIF4E сам по себе является ключевым регулятором роста и деления клеток, полагают, что его ген может быть одной из основных мишеней регуляторного воздействия белка Myc.

Регулируемое фосфорилирование фактора eIF4E. Фософорилированное состояние полипептидной цепи фактора eIF4E коррелирует с повышенной скоростью трансляции. В митозе, характеризуемом низкой скоростью трансляции, уровень фосфорилирования eIF4E минимален. Количество фосфорилированных молекул фактора возрастает в ответ на внеклеточные воздействия гормонами, факторами роста, митогенами и цитокинами, а также в условиях повышенной нагрузки на сердце. У млекопитающих в ответ на все исследованные стимулы фосфорилирование полипептидной цепи происходит в основном в положении S209 (нумерация по полипептиду мышей). Остаток Thr в положении 210 фосфорилируется значительно реже. Поскольку в клетках, трансформированных онкогенами ras и src, наблюдается усиление фосфорилирования eIF4E, полагают, что в этом процессе участвуют MAP(ERK)-киназы (MAPK/ERK). Это участие может быть косвенным, так как в системах in vitro киназы ERK не обладают способностью фосфорилировать eIF4E. Недавно было показано, что общим субстратом протеинкиназ p38MAPK и ERK является протеинкиназа фактора eIF4E, названная MNK1 (MAP kinase interacting kinase 1), которая в активном состоянии фосфорилирована. Поскольку MNK1 эффективно и специфически фосфорилирует фактор eIF4E in vitro по остатку Ser в положении 209, ее рассматривают в качестве основного кандидата, модифицирующего этот фактор и в живой клетке, после активации каскадов реакций с участием киназ ERK и p38 MAPK.

Семейство белков-репрессоров фактора eIF4E. Недавно были обнаружены небольшие белки (молекулярная масса ~12 кДа), названные 4E-BP1, 4E-BP2 и 4E-BP3 (eIF4E-binding proteins 1, 2 and 3), ингибирующие кэп-зависимую трансляцию после прямого взаимодействия с eIF4E. Образование комплекса eIF4E–4E-BP не изменяет сродство фактора к кэп-структуре, однако предотвращает его взаимодействие с eIF4G. Белки-ингибиторы 1, 2 и фактор eIF4G обладают гомологичной последовательностью аминокислот YXXXXLΦ, где X – любая аминокислота, а Φ – алифатический аминокислотный остаток. Эта последовательность необходима для обсуждаемого белок-белкового взаимодействия.

Сродство ингибиторов семейства 4E-BP к фактору eIF4E регулируется через их фосфорилирование. Ингибитор 4E-BP1 был вначале идентифицирован как основной полипептид, фосфорилируемый под действием инсулина. Фосфорилирование полипептидных цепей ингибиторов предотвращает образование белок-белковых комплексов и происходит в присутствии гормонов (инсулин, ангиотензин, гастрин), факторов роста (EGF, PDGF, NGF,IGFI, IGFII), цитокинов (IL-3, GMCSF), митогенов (TPA) и во время аденовирусной инфекции. В то же время в клетках некоторых типов тепловой шок и полиовирусная инфекция сопровождаются снижением уровней фосфорилирования ингибиторов. Все это указывает на прямое участие ингибиторов 4E-BP в регуляции трансляции у эукариот через взаимодействие с фактором eIF4E. По крайней мере, ингибиторы 4E-BP1 и 4E-BP2 являются субстратами протеинкиназы FRAP/mTOR – очень большого белка, принадлежащего к семейству киназ PIK, родственных киназам фосфатидилинозитола. Каскад реакций, завершающихся фосфорилированием этой киназы и, в конечном счете, белковых ингибиторов трансляции, запускается в ответ на вышеупомянутые внеклеточные стимулы киназой PIK3, фосфорилирующей OH-группу фосфоинозитида в положении 3.

Фактор eIF4E в регуляции роста и пролиферации клеток. Как следует из вышеизложенного, фактор eIF4E и его белковые ингибиторы являются специфическими мишенями протеинкиназ, активируемых в ответ на внеклеточные регуляторные воздействия. Это указывает на важную роль фактора в регуляции клеточного цикла. Действительно, микроинъекция eIF4E в покоящиеся фибробласты индуцирует в них синтез ДНК, а антисмысловые РНК к мРНК фактора резко увеличивают время прохождения клеток через G1/S фазы клеточного цикла.

Сверхэкспрессия гена eIF4E приводит к характерным морфологическим изменениям в клетках HeLa и трансформирует иммортализованные клеточные линии грызунов. При этом происходит подавление апоптоза, индуцируемого в клетках истощением сыворотки. Кроме того, повышение внутриклеточного уровня фактора имеет место в опухолях различного происхождения. Все это делает фактор eIF4E объектом пристального внимания онкологов.

Фактор eIF2 как объект регуляторных воздействий. Как уже упоминалось выше, eIF2 представляет собой гетеротримерный белковый комплекс. Его α-субъединица фосфорилируется тремя известными киназами эукариот: у животных – HRI и PKR, а у дрожжей – GCN2. Фосфорилирование фактора предотвращает обмен GDP на GTP, опосредованный фактором eIF2B, и ингибирует трансляцию. Поскольку фосфорилированная форма eIF2 обладает повышенным сродством к eIF2B, последний становится эффективным конкурентным ингибитором формирования активного комплекса eIF2–GTP–Met-тРНКi.

В качестве примера изменения эффективности трансляции мРНК через фосфорилирование фактора инициации eIF2 рассмотрим механизм контроля биосинтеза гемоглобина под действием гема. Этот пример интересен также и тем, что объясняет необходимость добавления гема в бесклеточные системы трансляции, получаемые на основе белков ретикулоцитов. Более подробно бесклеточные системы трансляции описаны в разделе 7.5.

Трансляция глобиновой мРНК в бесклеточной системе биосинтеза белка из ретикулоцитов кроликов в отсутствие гемина (окисленной формы гема) сопровождается быстрым прекращением включения аминокислот в растущие полипептидные цепи, т.е. остановкой трансляции. Оказалось, что в отсутствие гемина специфическая протеинкиназа фосфорилирует фактор инициации трансляции eIF2, который в фосфорилированном состоянии прочно взаимодействует с другим фактором инициации eIF2B и в составе комплекса остается в связанном с рибосомами состоянии. В результате трансляция глобиновой мРНК останавливается. Гемин, находящийся в избытке в системе трансляции, взаимодействует с протеинкиназой и инактивирует ее. Протеинкиназа утрачивает способность фосфорилировать фактор eIF2 и, как следствие, блокировать трансляцию.

Координация синтеза глобинов на уровне трансляции происходит и в других случаях. Известно, что в диплоидной клетке человека имеются четыре активных a-глобиновых и лишь два экспрессирующихся b-глобиновых гена. Поскольку правильная сборка молекул гемоглобина предполагает участие эквимолярных количеств полипептидных цепей a- и b-глобина, необходима координация биосинтеза этих белков, которая осуществляется на уровне инициации трансляции. Оказывается, a-глобиновая мРНК конкурирует с b-глобиновой мРНК за факторы инициации трансляции, однако b-глобиновая мРНК обладает большим сродством к факторам, что приводит к более высокой эффективности ее трансляции по сравнению с a-глобиновой мРНК. Предполагается, что в качестве фактора инициации трансляции, ответственного за предпочтительную трансляцию b-глобиновой мРНК, выступает кэп-связывающий белок.

Вышеописанные примеры показывают, как изменяется эффективность инициации трансляции определенных мРНК рибосомами при непосредственном воздействии на факторы инициации. Имеются и другие механизмы регуляции эффективности трансляции и, в конечном счете, регуляции экспрессии генов, реализующие свое действие через изменение эффективности инициации трансляции мРНК. Среди факторов, влияющих на эти механизмы, следует упомянуть, во-первых, разную эффективность ("силу") 5’-концевых областей инициации трансляции TIR (в частности последовательности Шайна–Дальгарно), необходимых для связывания рибосом в процессе образования инициаторного комплекса. Такие последовательности обеспечивают требуемую скорость трансляции соответствующих мРНК (подробнее см. раздел 7.2.6). Во-вторых, регуляция скорости инициации трансляции возможна за счет влияния пространственной структуры 5’-концевого инициаторного района мРНК. Сворачивание этой части мРНК в стабильную пространственную структуру блокирует трансляцию. В-третьих, эффективная регуляция инициации трансляции определенных мРНК достигается за счет специфического взаимодействия инициаторных участков мРНК с белками-регуляторами, которые в данном случае выступают репрессорами инициации трансляции.

Белки, взаимодействующие с мРНК, как регуляторы трансляции. Большинство регуляторных белков, взаимодействующих с 5’-концевыми TIR-последовательностями мРНК прокариот, являются негативными регуляторами трансляции. Классический пример такой регуляции экспрессии генов дают рибосомные белки E. coli – репрессоры собственного синтеза, которые предотвращают взаимодействие 30S субчастиц рибосом со своими мРНК. Оригинальный механизм репрессии использует рибосомный белок S15, который, взаимодействуя с TIR-последовательностью своей мРНК, стабилизирует предсуществующий псевдоузел. В результате SD-область мРНК становится ловушкой для 30S субчастицы рибосом, которая взаимодействует с ней, но не может инициировать синтез белка.

Аналогичные механизмы функционируют и у эукариот. В этом отношении хорошо изучена регуляция трансляции мРНК ферритина, синтазы δ-аминолевулиновой кислоты и субъединицы b сукцинатдегидрогеназы позвоночных животных. 5’UTR мРНК этих белков содержат регуляторный элемент IRE (iron-responsive element), с которым взаимодействует белок IRP (iron-regulatory protein), акцептирующий ионы железа. В отсутствие железа IRP связывается с IRE и блокирует трансляцию мРНК. Сродство IRP к IRE понижается в 50–100 раз, если он находится в комплексе с ионами железа. Этого оказывается достаточно для вовлечения соответствующих мРНК в трансляцию.

Цитоплазматические мРНК, не участвующие в синтезе белка в составе полисом, образуют нетранслируемые мРНП-комплексы. Кроме уже рассмотренных выше регуляторных белков, распознающих определенные последовательности мРНК конкретных видов, два белка обнаруживаются во всех мРНП в большом количестве: поли(А)-связывающий белок PABP (p70) и белок р50 с молекулярной массой ~50 кДа. Роль белка PABP в стабилизации мРНК и инициации трансляции уже обсуждалась. Теперь же целесообразно рассмотреть регуляторные функции белка p50.

Белок p50, ассоциированный с цитоплазматическими мРНП-частицами. В отличие от белка PABP, преимущественно ассоциированного с функционирующими полисомами, белок p50 является основным компонентом как неактивных мРНП, так и участвующих в синтезе белка. Белок p50 ретикулоцитов кроликов обнаруживает до 98% гомологии с факторами транскрипции животных, взаимодействующими с так называемым Y-боксом, цис-действующей регуляторной последовательностью ДНК CTATTGGC/TC/TAA. Факторы этого семейства преимущественно связывают одноцепочечную и апуринизированную ДНК, трехцепочечную H-ДНК и РНК.

Отмечена двойственная роль белка p50 в регуляции трансляции: он может выступать как ингибитор и как активатор биосинтеза белка. При высоком отношении p50/мРНК (5–10 молекул белка на молекулу мРНК) имеет место ингибирование трансляции, при низком (до четырех молекул p50 на молекулу мРНК) – активация. Ингибирующая функция белка обнаружена при депонировании мРНК в ооцитах, а также в условиях сверхэкспрессии p50 в соматических клетках. Возможно, при высоких концентрациях белка происходит освобождение его С-концевых частей от контактов с РНК, приводящее к мультимеризации белка и переходу мРНП в конденсированное состояние.

Альтернативно, белок p50 выступает в качестве фактора трансляции в полисомах, активно синтезирующих белок. Полагают, что в этом случае он может облегчать инициацию трансляции, предотвращая неспецифическое взаимодействие мРНК с факторами трансляции, а также обеспечивая формирование у мРНК оптимальной пространственной структуры. Поскольку у p50 обнаружена РНК-расплетающая активность, он может способствовать сканированию 5’UTR мРНК прединициационным комплексом.

Антисмысловые РНК как регуляторы трансляции. Прокариотические антисмысловые РНК длиной 70–110 нт образуют структуры типа "стебель–петля", в которых стебель защищает эти РНК от деградации, а петля длиной шесть–восемь нт служит для первоначального взаимодействия с мРНК-мишенью. После образования комплексов РНК–РНК наблюдали изменение стабильности мРНК, эффективности процессинга РНК-мишени, терминации транскрипции или инициации их трансляции. Из этого видно, что антисмысловые РНК являются мощными природными модуляторами экспрессии генов у прокариот. Данные о возможном участии природных антисмысловых РНК в регуляции трансляции у эукариот противоречивы.

Короткие ОРС в 5’-концевых лидерных последовательностях РНК как регуляторы трансляции.Около 10% мРНК растений содержат в своих 5’-концевых лидерных последовательностях более одного AUG-кодона. Некоторые из них удаляются с помощью альтернативного сплайсинга. Другие возникают в результате использования РНК-полимеразами альтернативных промоторов при инициации транскрипции соответствующих генов. Присутствие коротких ОРС в лидерных последовательностях мРНК, как правило, сопровождается снижением эффективности трансляции таких матриц. Функционирование этого механизма обнаружено в клетках млекопитающих, растений и дрожжей. Влияние коротких ОРС на трансляцию расположенных ниже последовательностей нуклеотидов мРНК недавно было детально исследовано с использованием искусственных генно-инженерных конструкций, в которых изменяли длину и число потенциальных сайтов инициации трансляции, предшествовавших генам-репортерам. Оказалось, что ингибирующее действие коротких ОРС возрастает с увеличением их длины. Даже одиночный AUG-кодон, снижает уровень трансляции ниже расположенных последовательностей, по крайней мере, в два раза. Короткие ОРС промежуточной длины (~30 кодонов) обладали пятикратным ингибирующим действием, а протяженные ОРС (>100 кодонов) полностью подавляли трансляцию следующих за ними последовательностей. Механизм ингибирующего действия коротких ОРС связан с тем, что они транслируются. Это снижает вероятность инициации трансляции на инициирующих кодонах, расположенных вслед за ними, поскольку процесс реинициации трансляции требует вхождения новых факторов инициации трансляции в инициаторный комплекс, включающий рибосому.

Трансактивация трансляции полицистронных РНК у вирусов.Предшественники геномной РНК вируса мозаики цветной капусты, а также их производные, подвергнутые альтернативному сплайсингу, являются полицистронными мРНК для многих вирусных белков. ОРС сближены друг с другом, и их не разделяют протяженные межцистронные последовательности. Такие РНК содержат внутренние AUG-кодоны, которые неэффективно используются для инициации трансляции в протопластах или трансгенных растениях, однако начинают функционировать в присутствии вирусных генов-трансактиваторов (TAV) (рис. I.40,д). В частности, трансактиваторная функция

– Конец работы –

Эта тема принадлежит разделу:

Экспрессия генов

На сайте allrefs.net читайте: "Экспрессия генов"

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Регуляция инициации трансляции

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЧАСТЬ I. МЕХАНИЗМЫ ХРАНЕНИЯ И РЕАЛИЗАЦИИ ГЕНЕТИЧЕСКОЙ ИНФОРМАЦИИ
ВВЕДЕНИЕ Организм. Живой организм представляет собой самовоспроизводящуюся, открытую термодинамическую систему, в которой пути превращения вещества и э

Средний размер гаплоидного генома у некоторых групп организмов
Группы организмов Средний размер генома, п.о. Мелкие вирусы 1,0·104 Микоплазмы 1,6·1

Гены и хромосомы
Генетическая информация о структуре отдельных белков и нуклеиновых кислот у всех организмов заключена в молекулах ДНК или РНК в виде последовательностей нуклеотидов, называемых генами

Геном прокариот
Как уже было упомянуто выше, основной чертой молекулярной организации прокариот является отсутствие в их клетках (или вирионах – вирусных частицах, в случае вирусов) ядра, отгороженного ядер

Геном вирусов
По определению Х. Френкель-Конрата, "вирусы – это частицы, состоящие из одной или нескольких молекул ДНК или РНК, обычно (но не всегда) окруженных белковой оболочкой; вирусы способны передават

Геном архебактерий
Царство архебактерий представляет собой своеобразную и наименее изученную таксономическую группу прокариот. Хотя по своей морфологии Archeabacteria похожи на привычные эубактерии, на молекулярном у

Минимальный размер генома одноклеточных организмов
Определение минимального размера генома, обеспечивающего все необходимые функции, которые позволяют одноклеточному организму существовать в определенных экологических условиях, не является праздным

Геном эукариот
Как уже упоминалось выше, в отличие от прокариот основная часть генома эукариот находится в специальном клеточном компартменте (органелле), получившем название ядра, а значи

Последовательности нуклеотидов эукариотического генома
Геном эукариот составляют уникальные и повторяющиеся последовательности нуклеотидов. Содержание уникальных последовательностей в геноме, определенное на основании кинетики реассоциации фрагментиров

Хроматин
Хроматином называют сложную смесь веществ, из которых построены хромосомы эукариот. Основными компонентами хроматина являются ДНК, гистоны и негистоновые белки, образующие высо

Свойства гистонов животных
Гистон Размер полипептида (число аминокислот) Локализация и типы посттрансляционных модификаций   Вся мол

Роль ДНК-топоизомераз в обеспечении структуры и функционирования хроматина
Топоизомеразы контролируют в клетках уровень суперскрученности ДНК, который может изменяться в процессе ее репликации, транскрипции, гомологичной рекомбинации, а также во время перестроек хроматина

Транскрипция
В процессе транскрипции генов происходит биосинтез молекул РНК, комплементарных одной из цепей матричной ДНК, сопровождаемый полимеризацией четырех рибонуклеозидтрифосфатов (ATP, GTP, CTP и UTP) с

ДНК-зависимые РНК-полимеразы
В соответствии с субъединичным составом РНК-полимеразы подразделяются на две группы. К первой группе относятся ферменты, состоящие только из одной субъединицы, среди них – РНК-полимеразы митохондри

РНК-полимеразы II дрожжей
Компонент Характеристика Pol II РНК-Полимеразная активность, взаимодействует с множеством общих и тканеспецифических факторов транск

Единицы транскрипции (транскриптоны)
Синтез РНК молекулами РНК-полимераз in vivo начинается в определенных местах ДНК, называемых промоторами, и завершается на особых регуляторных последовательностях – терминаторах. Посл

Этапы транскрипции
Процесс транскрипции в настоящее время принято подразделять на 4 основные стадии: 1) связывание молекул РНК-полимеразы с ДНК и распознавание промотора; 2) инициация; 3) элонгация; 4)

Субъединичный состав и характеристика основных факторов транскрипции (GTF) РНК-полимеразы II человека
  Фактор (GTF) Молекулярные массы субъединиц (кДа) и их обозначение   Характеристика TFIIA 37 (a) 19

Основные факторы элонгации РНК-полимеразы II
Фактор Структура Молекулярная масса полипептидов, кДа Функция P-TEFb Гетеродимер 124, 43

Хроматин во время транскрипции
В эукариотических клетках матрицей для РНК-полимераз служит ДНК, находящаяся в составе хроматина. Из общих соображений белки нуклеосом и более высокоорганизованного хроматина должны быть препятстви

Котранскрипционные и посттранскрипционные модификации РНК
Транскрипция у любого организма является первым этапом реализации генетической информации – экспрессии генов. Однако первичные транскрипты, как правило, представляют собой лишь предшественники зрел

Процессинг РНК у бактерий
мРНК прокариот обычно являются полицистронными, т.е. включают в себя последовательности нуклеотидов нескольких генов одного оперона (рис. I.10,а). Полицистронные мРНК бактерий при выполнении

Редактирование пре-мРНК
Недавно появились сообщения о новых механизмах изменения кодирующего потенциала мРНК на посттранскрипционном уровне, названных редактированием РНК (editing). Оказалось, что в клетках многих

Различные способы редактирования мРНК
Объект Модифицированные или добавленные нуклеотиды Митохондрии трипаносом AAUUUAUGUUGUCUUU Митохондрии P. po

Редактирование РНК у животных и их вирусов
Организм, ткань Локализация РНК-субстрат Последствия редактирования Печень/кишечник крыс Ядро

Другие модификации эукариотических мРНК
Посттранскрипционные модификации предшественников эукариотических мРНК по сравнению с теми же изменениями первичных транскриптов прокариот более разнообразны и играют большую роль в регуляции экспр

Сравнение полиаденилирования мРНК у эукариот и прокариот
Функции Млекопитающие E. coli Длина поли(А)-последовательностей, нт 80–200 14–60 У

Интронов группы I
Аутосплайсинг Обратное лигирование   GTPOH + [Экзон 1]upA-Интрон-Gpa[Экзон 2] ↓

Кэп-связывающий комплекс в роли фактора, сопрягающего основные реакции метаболизма транскриптов РНК-полимеразы II
РНК не может находиться in vivo в свободном виде. На протяжении всего внутриклеточного существования – от инициации биосинтеза до полной деградации – РНК пребывает в составе рибонуклеопротеиновых к

Функциональная компартментализация ядра
При рассмотрении механизмов реализации генетической информации на уровне транскрипции и посттранскрипционных модификаций РНК чаще всего не принимается во внимание пространственная внутриклеточная о

Интерфазные хромосомы в ядре
В разделе 1.3 уже кратко обсуждался петельно-доменный уровень структурной организации хромосом эукариот, который отражает разделение интерфазных хромосом на дискретные домены по функциональному при

Ядрышко
Структурно-функциональная организация ядрышка (nucleolus) еще более наглядно иллюстрирует концепцию функциональной компартментализации ядра эукариотических клеток. В этой части ядра происход

Пространственная организация синтеза мРНК
Внутриядерный синтез мРНК и доставка зрелых транскриптов к месту их трансляции требуют участия множества тонко сбалансированных во времени, пространственно организованных молекулярных механизмов. В

Ядерные тельца и домены
Исследования структурно-функцональных отношений в ядре в связи с компартментализацией транскрипции, процессинга РНК и репликации продемонстрировали наличие особых функций у многих морфологически ра

Компартментализованное ядро
Два основных структурных образования характерны для ядер всех эукариот. Это, во-первых, оболочка ядра с ядерными порами, связанная с ядерной ламиной (электронно-плотный слой, прилегающий к я

Биосинтез белка рибосомами бактерий
В процесс биосинтеза белка рибосомами, называемого трансляцией, вовлечено множество макромолекул и макромолекулярных комплексов. На этом этапе реализации генетической информации происходит с

Рибосомы
Рибосомы представляют собой крупный рибонуклеопротеидный комплекс с молекулярной массой ~ 2,5 мДа, состоящий из рибосомных белков, молекул рРНК и ассоциированных с ними факторов трансляции. Рибосом

Этапы биосинтеза белка
Хотя построение первых моделей механизмов биосинтеза белка было начато еще в начале 1960-х гг., полное описание процесса трансляции далеко до завершения и в настоящее время. Ниже будут кратко рассм

Антибиотики, действующие на уровне трансляции
На рис. I.21 приведены некоторые широко распространенные антибиотики, являющиеся ингибиторами биосинтеза белка у бактерий. Многие из них находят применение не только как лекарственные средства, но

Трансляция у эукариот
Бактерии обладают единственной универсальной системой трансляции, основные механизмы функционирования которой были кратко рассмотрены выше. В отличие от этого, клетки животных кроме основной систем

Особенности первичной структуры эукариотических мРНК
Зрелая мРНК эукариот наряду с основной последовательностью нуклеотидов, в которой закодирована информация о последовательности аминокислот в соответствующем белке, содержит целый ряд некодирующих п

Инициация биосинтеза белка эукариотическими рибосомами
Как будет видно из дальнейшего изложения, инициация трансляции эукариотических мРНК может осуществляться, по крайней мере, тремя способами. В соответствии с первым наиболее распространенным механиз

Элонгация полипептидных цепей
Элонгация полипептидных цепей в ходе эукариотической трансляции традиционно пользовалась меньшим вниманием исследователей по сравнению с инициацией, поскольку считалось, что ее механизмы в основных

Терминация трансляции
В эукариотических белоксинтезирующих системах терминация трансляции, как и у бактерий, контролируется специфическими рилизинг-факторами. Однако у эукариот эти факторы менее разнообразны. В частност

Трансляция в митохондриях
Митохондрии являются органеллами эукариотических клеток, в которых в результате окислительного фосфорилирования энергия химических связей, освобождающаяся при метаболизме, накапливается в виде энер

Трансляция в хлоропластах.
Хлоропласты являются органеллами клеток растений, осуществляющих процесс фотосинтеза – преобразование энергии квантов света в энергию макроэргических связей ATP. Так же как и митохондрии, хлороплас

Регуляция экспрессии генов на уровне транскрипции у прокариот
Регуляция транскрипции в клетках осуществляется на уровне индивидуальных генов, их блоков и даже целых хромосом. Возможность управления многими генами, как правило, обеспечивается наличием у них об

Регуляция на уровне инициации транскрипции
Активность многих генов прокариот регулируется с помощью белковых факторов, взаимодействующих с регуляторными участками промоторов генов. При этом происходят как активация транскрипции генов, так и

Регуляция синтеза РНК на уровне элонгации и терминации
Выше было отмечено, что РНК-полимераза в процессе элонгации цепей РНК перемещается неравномерно вдоль матричной ДНК и во время ее движения имеют место остановки (паузы). Время задержки молекул РНК-

Регуляция экспрессии генов на уровне транскрипции у эукариот
Несмотря на то что основные принципы регуляции транскрипции генов у прокариотических и эукариотических организмов остаются неизменными – через специфические взаимодействия белков и нуклеиновых кисл

Передача сигнала и вторичные мессенджеры
Жизнь любой клетки, включая глобальные процессы ее роста, деления и даже гибели, зависит от внешних регуляторных сигналов, которые она воспринимает. Такими сигналами могут быть физические воздейств

Рецепторы мембран, осуществляющие трансмембранный перенос сигнала
Класс рецепторов Четвертичная структура Система переноса сигнала Лиганд 1. Олигомеры, окружающие каналы: а) активируе

Механизмы позитивной регуляции транскрипции
При обсуждении механизмов внутриклеточной передачи сигнала были упомянуты регуляторные белки, взаимодействующие со специфическими последовательностями нуклеотидов генов и получившие название фактор

Функциональные домены факторов транскрипции
  Домен Функция Факторы, содержащие домен Примечание      

Механизмы негативной регуляции транскрипции
Позитивный контроль транскрипции у эукариот, в котором участвуют многочисленные активаторы транскрипции, играет ключевую роль в регуляции экспрессии их генов на уровне транскрипции. Однако негативн

Импринтинг
Другим характерным примером регуляции экспрессии генов, приводящей к эпигенетическому наследованию признаков, является уже упомянутый выше импринтинг, при котором специфический характер дифференциа

Метилирование ДНК в регуляции транскрипции
Единственной известной генетически запрограммированной ковалентной модификацией ДНК у высших эукариот является метилирование остатков цитозина в положении 5 с образованием 5-метилцитозина (5-mC). Э

Направленный транспорт, внутриклеточная локализация и депонирование мРНК
По завершении регулируемого синтеза РНК в процессе транскрипции она должна быть доставлена к месту трансляции, где сценарий координированной экспрессии генов получает свое дальнейшее развитие. При

Сплайсинг РНК в регуляции экспрессии генов
Разнообразные механизмы процессинга РНК в клетках были уже рассмотрены выше. Как оказалось, созревание мРНК играет важную роль и в регуляции экспрессии тех генов, транскриптами которых эти РНК явля

Избирательная деградация мРНК
Время полужизни мРНК в клетках является важным фактором регуляции экспрессии генов. Феномен деградации мРНК как регуляторного явления впервые обнаружен у бактерий на заре развития молекулярной гене

Регуляция экспрессии генов на уровне трансляции
В процесс биосинтеза белка рибосомами вовлекается большое количество мРНК, экипированных разнообразными регуляторными элементами. Даже в случае клеток дрожжей количество транслируемых видов мРНК пр

Регуляция элонгации синтеза полипептидных цепей
При обсуждении механизмов элонгации цепей РНК в процессе транскрипции была отмечена неравномерность прочитывания матричной ДНК РНК-полимеразами. То же самое наблюдается и во время элонгации растущи

Регуляция терминации трансляции
Альтернативные сайты терминации трансляции могут быть использованы для расширения кодирующего потенциала определенных генов. Выше уже был рассмотрен пример, в котором в результате редактирования РН

Синтез белков, содержащих остатки селеноцистеина
С помощью своеобразного механизма осуществляется передача генетической информации от генов к полипептидным цепям селенопротеинов с необычным аминокислотным остатком – селеноцистеином, входящим в их

Посттрансляционная регуляция экспрессии генов
Синтезом полноценного полипептида в результате трансляции кодирующей его мРНК рибосомами обычно завершается процесс передачи генетической информации от генов к белкам как у бактерий, так и у высших

Последствия фолдинга вновь синтезированных полипептидных цепей
В процессе трансляции растущие полипептидные цепи начинают приобретать высокоспецифическую пространственную структуру, которая формируется полностью вскоре после завершения их биосинтеза. Процесс с

Специфические протеиназы в посттрансляционном процессинге белков
Одним из характерных примеров специфического действия протеиназ является активация предшественников (зимогенов) протеолитических ферментов (трипсина и химотрипсина) после их переноса от места синте

Убиквитин-зависимая система протеолиза в регулируемой деградации белков
Убиквитин-зависимая система протеолиза проводит поиск потенциальной мишени для протеолитической деградации среди огромного числа внутриклеточных белков. Все белки несут в себе специфические сигналы

Сплайсинг белков
Феномен сплайсинга белков, обнаруженный в 1990 г. в группой Т.Стивенса, пошатнул еще один постулат молекулярной биологии, в соответствии с которым последовательности нуклеотидов зрелых мРНК всегда

Другие посттрансляционные модификации белков
Многие белки и секретируемые пептиды претерпевают различные структурные изменения в результате котрансляционных и посттрансляционных модификаций, т.е. во время или после завершения их синтеза рибос

Репликация ДНК
Репликация ДНК происходит в соответствии с правилами Уотсона–Крика и наряду с биосинтезом РНК и белков является еще одним примером матричного синтеза биологических макромолекул. Во время репликации

Белки, входящие в состав репликативных комплексов прокариотических и эукариотических организмов
Белки в организмах Функции компонентов комплексов E. coli Фаг Т4 Вирус SV40 / человек DnaB

Репликативная вилка E. coli и бактериофага T4
Во время редупликации ДНК ее дочерние синтезирующиеся цепи расходятся из точки репликации, образуя Y-подобную структуру, называемую репликативной вилкой. Именно в окрестностях этой точки раз

Особенности функционирования репликативной вилки эукариот
Механизмы репликации ДНК у высших эукариот менее изучены из-за их большей сложности. Основные результаты получены на модельной системе с ДНК вируса SV40, в которой процесс репликации исследовали в

Эукариотические ДНК-полимеразы и их функциональные гомологи у прокариот
ДНК-полимераза Ген дрожжей Гомолог E. coli Молекулярные массы субъединиц, кДа Биологические функции a

Регуляция репликации ДНК
Подробное рассмотрение молекулярных механизмов регуляции репликации ДНК выходит за рамки книги, поэтому ограничимся несколькими замечаниями по данному вопросу и более детально обсудим лишь механизм

Инициация репликации ДНК у E. coli и ее регуляция
Репликация хромосомной ДНК у бактерий играет ключевую роль в их жизненном цикле. В ходе этого процесса микроорганизмы редуплицируют свой геном, а образовавшиеся дочерние геномы далее переходят в до

Регуляция репликации плазмиды ColE1
Многие клетки прокариот в дополнение к основной хромосоме содержат небольшие внехромосомные ДНК, называемые плазмидами. Плазмиды, размеры которых варьируют от нескольких тысяч до сотен тысяч

Особенности репликации линейных геномов
Кольцевые замкнутые геномы характерны для многих бактерий, их плазмид и некоторых вирусов. У подавляющего большинства других организмов геном представлен линейными молекулами ДНК в составе одной ил

Линейные хромосомы бактерий
Афоризм Жака Моно: "То, что верно для E. coli, – верно и для других бактерий (слона)" получил широкое распространение. К счастью, на деле все обстоит не так скучно. До недавнего времени о

Репликаторы эукариот
Хромосомы эукариот содержат линейные молекулы ДНК, а следовательно, остаются все те же проблемы, связанные с их репликацией, которые обсуждались в связи с воспроизводством линейных хромосом бактери

Репликация теломерных участков эукариотических хромосом
Исследование механизмов репликации теломерных участков эукариотических хромосом показало, что они принципиально отличаются от механизмов репликации центральных областей ДНК. Изучение этих механизмо

Пространственная организация синтеза ДНК у эукариот
Пространственная организация репликативного синтеза ДНК у эукариот является одним из наиболее ярких примеров внутриядерной компартментализации генетических процессов. Анализ локализации мест синтез

Мутации
Мутации – это наследуемые изменения структуры генома. Поскольку основу любого генома составляют нуклеиновые кислоты – ДНК или РНК, то под действием мутаций происходит, прежде всего, изменение струк

Основные источники мутаций и методы определения мутагенной активности
В основе мутаций на молекулярном уровне лежат две основные причины: ошибки репликации и мутагенные воздействия различной природы. Ошибки репликации возникают из-за того, что точность функционирован

Метаболиты нормальной микрофлоры человека, обладающие мутагенной и канцерогенной активностями
Соединение Метаболит Тип активности Метионин Этионин К    

SOS-мутагенез у бактерий
Образование мутаций в клетках организма, подвергнутого мутагенному воздействию, происходит в основном по одному и тому же механизму. При прохождении репликативного комплекса через некодирующий или

Мутаторный фенотип
Несмотря на обилие эндогенных и экзогенных мутагенов, лишь небольшая часть их взаимодействий с ДНК завершается образованием мутаций. Для того чтобы исходное повреждение ДНК в виде аддукта, апуринов

Экспансия ДНК
Под экспансией ДНК понимают увеличение числа копий коротких повторяющихся последовательностей нуклеотидов внутри кластера при передаче генетической информации от родителей потомкам. В настоящее вре

Адаптивные мутации
Проблема, связанная с возможностью возникновения адаптивных мутаций, имеет глубокие корни в биологии. За 50 лет до того как Ч. Дарвин начал свои знаменитые исследования происхождения биологических

Механизмы защиты генома от мутаций
Несмотря на то что иногда мутации помогают организму выжить, подавляющее большинство мутационных изменений генома нежелательно и сопровождается развитием различных патологических состояний мутантно

Репарация ДНК
Большая группа молекулярно-генетических явлений, известная в настоящее время под общим названием "репарация повреждений ДНК", была осознана как отдельный и очень важный биологический фено

Эксцизионная репарация в клетках животных
Эксцизионная репарация ДНК путем удаления поврежденных азотистых оснований (BER). Система BER вызывает защиту геномной ДНК от повреждений, вызываемых главным образом алкилирующими

ДНК-гликозилазы и эндонуклеазы клеток микроорганизмов и человека, участвующие в BER
Фермент Источник Ген Субстрат (см. рис. I.57) Урацил-ДНК-гликозилаза E. coli S. cerevisiae Человек

Белки животных, участвующие в NER
Белковая система Белки системы Ферментативная активность Функция в репарации XPA XPA (p31) Св

Гомологичная рекомбинация в репарации ДНК
Давно известно, что быстро делящиеся бактериальные клетки, содержащие несколько репликонов, образованных недореплицированными хромосомами (см. введение к разделу 4.2), более устойчивы к действию ио

Репарация ошибочно спаренных нуклеотидов
Система, осуществляющая репарацию ошибочно спаренных нуклеотидов (mismatch repair), выполняет в клетке несколько важных функций. Прежде всего она исправляет ошибки репликации ДНК, меняя ошибочно вк

Полимераза поли(ADP-рибозы) в репарации ДНК у эукариот
В отличие от бактерий одним из первых ответов клеток животных на тяжелые повреждения ДНК является массированная полимеризация остатков ADP-рибозы специальным ферментом – полимеразой поли(ADP-риб

Альтруистичная ДНК
Как следует из вышеизложенного, стабильность генетической информации любого организма обеспечивается двумя различными путями. Прежде всего, системы детоксикации ксенобиотиков и эндогенных мутагенов

Парадокс возможности существования многоклеточных организмов
Огромный размер генома многоклеточных организмов с генетической точки зрения должен создавать для их существования многочисленные и, на первый взгляд, трудноразрешимые препятствия. Проблемы начинаю

Повышение информационной стабильности генома избыточными последовательностями
Анализ структуры генома современных эукариот показывает, что эволюционные преобразования генома-предшественника, приведшие к включению в него избыточных последовательностей нуклеотидов, сопровождал

Селективная защита генов от мутаций
Во всех предыдущих рассуждениях речь шла о глобальной защите функционально значимых участков гипотетического генома от спонтанных и индуцируемых мутаций некодирующими последовательностями нуклеотид

Высокоупорядоченное расположение летальных генов на хромосомах
Если гипотеза о наличии внутри ядер генетически детерминированных, пространственно упорядоченных участков геномной ДНК является верной, то это влечет за собой важное следствие. В этом случае в проц

Возможный смысл парадокса С
У организмов, находящихся на примерно одинаковых ступенях эволюционного развития, часто наблюдаются значительные вариации в размерах геномов (см. главу 1). Например, у некоторых видов рыб, относящи

Рестриктазы и ДНК-метилазы
Среди ферментов, используемых в генной инженерии для клонирования, большое значение имеют эндонуклеазы рестрикции – рестриктазы. Эти ферменты, впервые открытые как часть системы рестрикции–м

Эффективность расщепления коротких последовательностей ДНК некоторыми распространенными рестриктазами
Рестриктаза Последовательность олигонуклеотидов в окрестностях сайта рестрикции Длина цепи, нт Процент расщепления олигонуклеотида после инкуба

ДНК- и РНК-лигазы
Создание фосфодиэфирных связей в одноцепочечных разрывах двухцепочечной ДНК с помощью ДНК-лигаз является наряду с рестрикцией одним из важнейших этапов получения рекомбинантных ДНК in vitro. Наибол

Ферменты матричного синтеза ДНК и РНК
К ферментам матричного синтеза нуклеиновых кислот относятся многочисленные ДНК- и РНК-зависимые ДНК- и РНК-полимеразы, осуществляющие зависимый от матричных ДНК или РНК синтез нуклеиновых кислот. Э

Частота ошибок при синтезе ДНК, осуществляемом термостабильными ДНК-полимеразами in vitro при проведении ПЦР в оптимальных условиях
ДНК-полимераза Частота мутаций (на 1 нуклеотид/1 раунд репликации) Pfu 1,3 10-6 Deep Vent

Другие ферменты
Среди других многочисленных ферментов, используемых в генной инженерии, прежде всего следует упомянуть полинуклеотидкиназы, которые осуществляют перенос g-фосфатных групп ATP на 5’

Векторы
Ферменты, описанные в предыдущем разделе, позволяют производить тонкие манипуляции как с протяженными молекулами ДНК, так и с их фрагментами. В частности, с помощью рестриктаз можно с большой точно

Векторы на основе фага l
Основным недостатком плазмидных векторов для клонирования является их малая емкость в отношении клонируемых фрагментов ДНК. Размер вставок клонируемой ДНК в плазмидных векторах, которые способны ст

Интегрирующие и челночные (бинарные) векторы
Векторы, пригодные для клонирования ДНК в бактериях, отличающихся от E. coli, должны обладать всеми характерными чертами, которые были отмечены выше. От только что рассмотренных они отличаются глав

Конструирование экспрессирующих векторов и их функционирование
Первая часть книги была посвящена описанию механизмов, обеспечивающих высокоэффективную и высокоспецифическую экспрессию генов. Такого рода информацию успешно используют в настоящее время для эффек

Векторы для переноса ДНК в клетки животных и растений
Все основные принципы, используемые при конструировании бактериальных векторов, применимы и для получения векторов эукариотических клеток. Как и в случае бактерий, эукариотический вектор представля

Клонотеки генов
Любой индивидуальный ген занимает лишь небольшую часть генома живого организма. В то же время размер генома даже наиболее просто организованных бактерий в среднем составляет 2•106 п.о.,

Получение клонотек генов
Клонотека генов представляет собой набор разных последовательностей нуклеотидов ДНК, клонированных в составе векторных молекул, которые в сумме составляют весь геном исследуемого организма или каку

Методы скрининга клонотек генов
Все методы получения из клонотек генов требуемых последовательностей нуклеотидов можно разделить на две группы. При использовании первой группы методов рекомбинантные бактерии или фаговые частицы и

Эукариотические системы экспрессии рекомбинантных генов, основанные на культурах клеток
Выделение любого нового рекомбинантного гена описанными выше методами неизбежно заканчивается попытками получения его полноценной экспрессии в искусственных генетических системах. Только на первый

Клетки яичников китайских хомячков (линия CHO)
Эта линия клеток и ее многочисленные производные часто используются для синтеза рекомбинантных белков после предварительной эндогенной амплификации соответствующих рекомбинантных генов, введенных в

Клетки селезенки мышей (линия MEL)
Обе системы экспрессии, описанные выше, базируются на амплификации трансгенов, обеспечивающей высокий уровень внутриклеточного синтеза кодируемых ими рекомбинантных белков в отобранных клонах клето

Клетки африканской зеленой мартышки (линия COS)
Получение временной экспрессии генов в клетках COS часто используется для быстрой наработки рекомбинантных белков и ДНК. При конструировании клеток COS клетки зеленой мартышки CV-1 были трансформир

Клетки насекомых, зараженные бакуловирусами
Многочисленное семейство бакуловирусов, размножающихся в клетках беспозвоночных, обладает геномом в виде двухцепочечной кольцевой ковалентно замкнутой ДНК длиной в 80–220 т.п.о. Круг хозяев бакулов

Сравнение эффективности рассмотренных систем экспрессии
Проведено сравнение эффективности рассмотренных выше систем экспрессии эукариотических рекомбинантных генов с использованием гена huLIF в качестве модели. In vivo этот белок с молекулярной массой 3

Бесклеточные белоксинтезирующие системы
Среди искусственных систем биосинтеза белка важное место занимают бесклеточные системы. Любая бесклеточная система создается, прежде всего, для моделирования конкретных биохимических процессов, про

Прокариотические системы
Среди прокариотических бесклеточных белоксинтезирующих систем наибольшее распространение получили системы на основе экстрактов клеток E. coli, хотя основные принципы, используемые для их получения,

Эукариотические системы
Несмотря на относительную простоту получения бактериальных белоксинтезирующих систем, их использование ограничивается трансляцией бактериальных и фаговых мРНК или рекомбинантных последовательностей

Проточные системы
Бесклеточные системы биосинтеза белка позволили генной инженерии получать экспрессию изолированных генов, не прибегая к помощи живых клеток. До недавнего времени все обсуждавшиеся выше бесклеточные

Другие современные методы исследования генов
Основным методическим достижением генной инженерии в исследовании генов является разработка способов выделения индивидуальных генов и экспрессии их в новом генетическом окружении в гомологичных и г

Рестрикционное картирование генов
Полную, но, к сожалению, пока трудно интерпретируемую информацию о строении гена может дать только определение его первичной структуры, т.е. последовательности составляющих ген нуклеотидов. На прак

S1-картирование РНК и ДНК
Нуклеаза S1, специфически гидролизующая одноцепочечные ДНК и РНК, успешно используется для исследования колинеарности ДНК и кодируемой ей РНК, точного картирования мест инициации и терминации транс

Футпринтинг
Принцип защиты последовательности нуклеотидов рестрикционных фрагментов ДНК белками от действия агентов, расщепляющих ДНК, лежит в основе футпринтинга – метода, позволяющего определять места специф

Стратегия выделения нового гена
После обсуждения основных экспериментальных приемов, используемых в современной генной инженерии, становится ясно, каким образом можно решить одну из основных методических задач молекулярной генети

Методы направленного получения мутаций
Развитие генной инженерии революционизировало процесс получения мутаций в конкретных участках генома и анализ последствий этих мутаций на молекулярном уровне. Совокупность методов получения мутаций

Получение делеций и вставок
Делецией называют потерю части нуклеотидов в геноме организма. Такой вид мутаций удобнее всего использовать для локализации (картирования) функционально значимых участков генов и кодируемых

Химический мутагенез
Делеции и вставки, создаваемые в структурных частях генов, как правило, их инактивируют, особенно в тех случаях, когда такие мутации приводят к сдвигу открытых рамок считывания. Поэтому делеции и в

Полимеразная цепная реакция в направленном мутагенезе
Разработка метода полимеразной цепной реакции принципиально изменила ситуацию в исследованиях по направленному мутагенезу. Использование ПЦР для направленного мутагенеза основано на применении в ка

Белковая инженерия
После рассмотрения способов получения сайт-специфических мутаций необходимо сделать лишь один шаг, чтобы оказаться лицом к лицу с бурно развивающимся направлением молекулярной генетики, называемым

Библиотеки пептидов и эпитопов
В живом организме большинство биологических процессов управляется посредством специфических белок-белковых или белково-нуклеиновых взаимодействий. К таким процессам относятся, например регуляция тр

Белки-репортеры в гибридных белках
В рассмотренных выше библиотеках пептидов последние ковалентно связаны с белком-носителем. В таком виде они являются одними из представителей гибридных белков, получаемых методами генной инженерии.

Подходы к созданию новых ферментов
Подавляющее большинство исследований, в которых методы белковой инженерии используют для замен отдельных аминокислотных остатков в полипептидных цепях белков, заканчиваются получением мутантных про

Субтилигаза в лигировании пептидов
В заключение рассмотрим еще одно неожиданное направление белковой инженерии, четко обозначившееся в самое последнее время. Во всех вышеупомянутых подходах конструирование белков с новыми свойствами

Концепция ксенобиоза
Успехи белковой инженерии, демонстрирующие возможность изменения субстратной специфичности ферментов путем замены одной или нескольких аминокислот с помощью направленного мутагенеза, наводят на мно

Антисмысловые РНК и олигонуклеотиды
Главный механизм, лежащий в основе функционирования системы антисмысловых РНК, прост и опирается на известный феномен взаимодействия двух комплементарных друг другу молекул нуклеиновых кислот с обр

Механизм действия антисмысловых РНК
Многочисленные исследования антисмысловых РНК как in vitro, так и in vivo показали, что конечным результатом их действия, как правило, является высокоспецифическое ослабление экспрессии генов, мРНК

Использование антисмысловых РНК
Получение фенокопий.Клетки или организмы, обладающие фенотипом мутантных клеток или организмов, сформировавшимся не вследствие мутаций, называют фенокопиями. Развитие техник

Влияние экспрессии антисмысловых РНК на фенотип трансгенных мышей
Гены-мишени Длина micРНК, п.о. Мишень в гене Фенотип Основной белок миелина Экзоны

Природные антисмысловые РНК
За то время, которое прошло с момента открытия в середине 1970-х годов антисмысловых РНК и их успешного использования для искусственной регуляции экспрессии генов, стало ясно, что этот эффектный ге

Рибозимы и дезоксирибозимы
Регуляция экспрессии генов с помощью антисмысловых РНК характеризуется высокой специфичностью. Это обусловлено большой точностью процесса РНК-РНК-гибридизации, основанной на комплементарном взаимод

Типы рибозимов
Эндорибонуклеазная активность РНК была впервые обнаружена Т. Чехом в 1980 г. у интрона группы I предшественника рибосомной РНК Tetrahymena, осуществляющего аутокаталитическую реакцию сплайсинга (ау

Свойства рибозимов
Стабильность рибозимов в биологических жидкостях. Нестабильность РНК является одним из основных ограничений, препятствующих эффективному их использованию in vivo в качестве лекарст

Рибозимы как лекарственные средства
На основании результатов рассмотренных опытов, а также других накопленных знаний о рибозимах складывалось мнение о принципиальной возможности использования рибозимов для регуляции активности конкре

Дезоксирибозимы
В отличие от РНК, выполняющих в клетке разнообразные функции, благодаря возможностям формирования у этих макромолекул сложных пространственных структур, для внутриклеточных ДНК пока известна единст

Аптамеры
Аптамерами называют небольшие молекулы нуклеиновых кислот, которые могут выполнять функции высокоспецифичных рецепторов низкомолекулярных органических соединений. Олигонуклеотидные аптамеры

Молекулы РНК у истоков жизни
Большинство современных теорий происхождения жизни рассматривает молекулы РНК, обладающие активностями рибозимов, в качестве первичных самореплицирующихся молекул, давших начало развитию жизни на З

Молекулы РНК в качестве РНК-репликаз
Для первоначального появления рибозимов необходим абиотический синтез олигорибонуклеотидов длиной 30–70 оснований. Долгое время это требование было камнем преткновения в разработке теории происхожд

Возможность синтеза полипептидных цепей молекулами РНК
Вскоре после открытия рибозимов в литературе стала активно обсуждаться гипотеза о каталитической (а не только структурной) функции рРНК в рибосомах. Первые экспериментальные данные в пользу возможн

Способы получения трансгенных многоклеточных организмов
Многоклеточный организм высших животных и растений является продуктом онтогенетического развития, при котором из одной клетки (зиготы), образовавшейся в результате слияния двух половых клеток родит

Экспрессия трансгенов
Если трансгены в своем функционировании проявляют тканеспецифичность, то уровень их экспрессии зависит от места интеграции в хромосому. В тех редких случаях, когда экспрессия трансгена полностью от

Использование трансгенов у животных
Техника трансгеноза открывает практически безграничные, принципиально новые возможности исследования экспрессии генов. Ниже будут кратко рассмотрены четыре активно развиваемые направления использов

Исследование механизмов экспрессии генов
Как уже упоминалось выше, цис-действующие регуляторные последовательности нуклеотидов обеспечивают тканеспецифический характер экспрессии трансгенов. Этим свойством воспользовались для опред

Токсигены в исследовании дифференцировки соматических клеток в онтогенезе
Выше рассматривалась возможность применения гибридных токсинов для специфического воздействия на группы соматических клеток, обладающих определенными фенотипическими маркерами. Высокоспецифической

Изменение физиологического статуса лабораторных и сельскохозяйственных животных
Одними из первых указаний на возможность использования трансгеноза для изменения физиологических параметров и физической конституции организма животных были результаты работ по экспрессии трансгено

Моделирование наследственных и приобретенных заболеваний человека
Для разработки эффективных методов лечения наследственных и приобретенных заболеваний человека, а также для полного понимания их этиологии требуется моделирование соответствующих симптомов на лабор

Трансгенные растения
Способность к вегетативному размножению отличает организм растений от организма высших животных, что заметно облегчает осуществление трансгеноза. Многие клетки растений, например клетки зародыша на

Генотерапия наследственных и приобретенных заболеваний
Современные методы лечения наследственных и приобретенных заболеваний связаны с введением в организм больного недостающих продуктов метаболизма или с ограничением поступления их предшественников с

Способы доставки новых генов в геном человека
Ретровирусные векторы. Для доставки трансгенов в организм человека в целях генотерапии ретровирусные векторы используются наиболее широко и являются одним из наиболее эффективных с

Управление экспрессией трансгенов в клетках-мишенях
Для того чтобы терапевтическое действие трансгенов реализовывалось в полной мере, часто бывает необходимо обеспечивать их тканеспецифическую экспрессию в клетках-мишенях на протяжении всей жизни ин

Современные достижения генотерапии онкологических заболеваний
Несмотря на разработку множества новых лекарственных препаратов, направленных на лечение онкологических заболеваний, за последние 30 лет не удалось увеличить число пациентов, проживших более 5 лет

Ближайшие перспективы использования генотерапии
Какие же еще заболевания человека можно рассматривать в качестве ближайшей перспективы для генотерапии? Как упоминалось выше, ретинобластома (онкологическое заболевание, при котором поражаются заро

Успехи генотерапии в модельных экспериментах
В последнее время получены впечатляющие результаты и по коррекции дефектов на генном уровне с помощью направленного переноса генов в клетки мышей. Одним из таких примеров является успешная генотера

Проблемы, возникающие в связи с практическим применением генотерапии
Несмотря на впечатляющие успехи генотерапии на модельных животных, в настоящее время имеется ряд принципиальных затруднений, препятствующих широкому использованию метода для лечения заболеваний чел

Получение клинического генетического материала
Для проведения ПЦР используют ДНК клеток различных органов и тканей человека. Основными требованиями, предъявляемыми к такой ДНК, является отсутствие сильной ее деградации и повреждений химическими

Диагностика заболеваний
В процессе диагностики и исследования генетических механизмов наследственных заболеваний человека возникают две тесно связанные друг с другом задачи. На первом этапе исследований в ДНК из клиническ

ДНК-типирование
Результаты, полученные при исследовании структуры и организации геномной ДНК животных, растений и микроорганизмов, наложили глубокий отпечаток на методологию их систематизации. Проблема адекватного

ДНК-типирование микроорганизмов
Наиболее часто в настоящее время используют два способа ДНК-типирования патогенных микроорганизмов, в основе которых лежит метод ПЦР. В первом случае используют один или несколько коротких праймеро

Микроматрицы и микрочипы ДНК
Одним из интенсивно развивающихся направлений биотехнологии нуклеиновых кислот в последнее время становится использование микроматриц ДНК для анализа нуклеотидных последовательностей. В этой группе

Ограничения в использовании микроматриц ДНК
Помимо самой достаточно сложной технологии производства микроматриц, к числу факторов, ограничивающих их широкое применение, относятся кинетические параметры гибридизации, а также точность и чувств

Использование микроматриц ДНК в фундаментальных и прикладных исследованиях
Определение первичной структуры и картирование ДНК являются основными направлениями использования микроматриц олигонуклеотидов в настоящее время. Прямое секвенирование генов с помощью олигонуклеоти

Основные подходы к картированию генома человека
Решение основной задачи программы "Геном человека" включает три основных этапа. На первом этапе необходимо специфическим образом разделить каждую индивидуальную хромосому на части меньшег

Генетические карты сцепления
Генетические карты сцепления представляют собой одномерные схемы взаимного расположения генетических маркеров на индивидуальных хромосомах. Под генетическими маркерами понимают любые

Современные методы построения генетических карт сцепления
  Метод Число картированных локусов Гибридизация соматических клеток Гибридизация in situ

ПЦР в исследованиях генома человека
Полимеразная цепная реакция занимает центральное место в разработке подходов к практическому осуществлению программы "Геном человека". Как уже обсуждалось выше (раздел 7.1.3), с помощью П

Физические карты низкого разрешения
В отличие от рассмотренных выше генетических карт сцепления физические карты генома отражают реальное расстояние между маркерами, выражаемое в парах оснований. Физические карты различаются по степе

Определение полной первичной структуры ДНК генома человека
Исчерпывающая физическая карта генома человека (и любого другого организма) должна представлять собой полную последовательность нуклеотидов ДНК всех его хромосом. Благодаря тому, что к решению тако

Базы данных получаемой информации
Полное использование информации о структуре генома человека в биологии и медицине станет возможным лишь в отдаленном будущем. Еще долгие годы предстоит собирать и обрабатывать получаемую информацию

ЗАКЛЮЧЕНИЕ
Современная генетика находится на взлете. Новые факты обнаруживаются настолько быстро, что едва хватает времени на то, чтобы просто осознать их появление. Еще труднее уловить многочисленные связи м

Конечный результат экспрессии генов предопределен.
Будущее трансгеноза и генотерапии. Это будет. И совершенно безразлично - хотим мы этого или нет.     Большинство физиологических моделей, в кот

К главе 1
  Георгиев Г.П. Гены высших организмов и их экспрессия. М.: Наука, 1989. 254 с. Георгиев Г.П., Бакаев В.В. Три уровня структурной организации хромосом эукариот

К главе 2
  Молекулярная биология: Структура и биосинтез нуклеиновых кислот / Под ред. А.С. Спирина. М.: Высш. шк. 1990. 352 с. Спирин А.С. Молекулярная биология. Структура рибо

К главе 3
  Жимулев И.Ф. Гетерохроматин и эффект положения гена. Новосибирск: Наука, 1993. 491 с. Льюин Б. Гены. М.: Мир, 1987. 544 с. Молекулярная биология: Стр

К главе 4
  Bell S.P. Eukaryotic replicators and associated protein complexes // Curr. Opinion Genet. Develop. 1995. Vol. 5. P. 162–167. Cesareni G., Heimer-Citterich M., Сas

К главе 5
  Ауэрбах Ш. Проблемы мутагенеза. М.: Мир, 1978. 463 с. DNA repair. A special issue. // Trends Biochem. Sci. 1995. Vol. 20. P. 381–440. Friedberg E.C., Ger

К главе 7
Патрушев Л.И. Биосинтез белка в искусственных генетических системах // Проблема белка. М.: Наука, 1995. Т.1 Химическое строение белка. С. 354–478. Рыбчин В.Н. Основы генетиче

К главе 8
Chang T.K., Jackson D.Y., Burnier J.P. et al. Subtiligase: a tool for semisynthesis of proteins // Proc. Nat. Acad. Sci. US. 1994. Vol. 91. P. 12544–12548. Houghten R.A

К главе 9
  Crooke S.T. Progress in antisense therapeutics // Med. Res. Rev. 1996. Vol. 16. P. 319–344. Dolnick B.J. Naturally occurring antisense RNA // Pharmacol. Ther.

К главе 10
  Свердлов Е.Д. Очерки современной молекулярной генетики по курсу лекций для студентов биологического факультета МГУ. Очерк 5. Трансгеноз и новая молекулярная генетика // Молек

К главе 11
Шагинян И.А., Гинцбург А.Л. ПЦР-генетическое типирование патогенных микроорганизмов // Генетика. 1995. Т. 31. С. 600–610. Graber J.H., O'Donnell M.J., Smith C.L., Cantor C.R.

К главе 12
Benner S.A., Trabesinger N., Schreiber D. Past-genomic science: Converting primary structure into physiological function // Adv. Enzyme Regul. 1998. Vol. 38. P. 155–180. Billings

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги