рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Статичні і динамічні характеристики схем включення.

Статичні і динамічні характеристики схем включення. - раздел Философия, Конспект лекцій з дисципліни Електротехніка, електроніка та мікропроцесорна техніка Вольт-Амперні Характеристики Транзисторів Розділяють На Статичні І Динамічні....

Вольт-амперні характеристики транзисторів розділяють на статичні і динамічні.

Статичні характеристики є графічним відображенням залежностей між струмами і напругами на вході і виході транзистора. Ці характеристики використовуються в розрахунках параметрів оптимальних режимів його роботи. Можливі різні комбінації струмів і напруг в залежностях, але практично використовуються тільки вхідні і вихідні статичні характеристики для двох основних схем включення – із спільною базою і із спільним емітером.

Для схем із спільною базою вхідні статичні характеристики – це залежність струму емітера ІЕ від напруги між емітером і базою UЕБ при незмінній напрузі між колектором і базою UКБ: ІЕ = f(UЕБ) при UКБ = const. Показана залежність аналогічна вольт-амперній характеристиці прямо включеного p-n переходу. Напруга UКБ мало впливає на струм емітера, оскільки вона зосереджена на колекторному переході і майже не впливає на проходження зарядів через емітерний перехід. Тому в довідниках для даного типу транзистора наводиться лише дві вхідні характеристики – одну для UКБ = 0 В, і другу, зняту при UКБ ¹ 0 В, наприклад при UКБ = –5 В.

Робота транзистора, при якій і на емітерний, і на колекторний переходи подані зворотні напруги відповідає режиму відсікання.

Вихідні статичні характеристики транзистора для схеми із спільною базою складаються із залежностей струму колектора ІК від напруги між колектором і базою UКБ при незмінних значення емітерного струму ІЕ: ІК = j(UКБ) при ІЕ = const.

Графіки колекторного струму ІК аналогічні вольт-амперній характеристиці зворотно включеного p-n переходу. При робочій полярності напруги UКБ , коли колекторний перехід включений в зворотному напрямку[11], вихідні характеристики уявляють собою майже прямі лінії з невеликим відхилом від горизонталі. Це пояснюється тим, що колекторний струм створюється за рахунок дифузії носіїв зарядів, які проникають із емітера через базу в колектор. Тому величина колекторного струму в основному визначається величиною струму емітера і незначно залежить від напруги UКБ, прикладеної до колекторного переходу.

При вхідному струмі ІЕ = 0 і UКБ > 0 характеристика виходить з початку координат, а потім проходить на невеликій висоті майже паралельно осі абсцис, що відповідає звичайній характеристиці зворотного струму p-n переходу. Струм ІКБ 0, що визначається такою характеристикою, є некерованим і є одним з параметрів транзистора. Із збільшенням струму ІЕ колекторний струм збільшується на DІК = aІЕІКБ 0, що і відображує сімейство графіків.

Невеликий нахил характеристик пояснюється впливом напруги UКБ на ширину бази: при збільшенні напруги база звужується за рахунок розширення колекторного переходу, послаблюється рекомбінація в базовому шарі і дещо зростає коефіцієнт передачі струму a, що і зумовлює деяке збільшення струму колектора ІК = aІЕ + ІКБ 0 при ІЕ = const. Нахил характеристик круто зростав би при наближенні UКБ до напруги пробою p-n переходу.

При зміні полярності напруги UКБ струм ІК різко зменшується і досягає нуля при значеннях UКБ близько десятих долей вольта. В цьому випадку колекторний перехід працює в прямому напрямку, струм через цей перехід різко збільшується і проходить в напрямку, зворотному нормальному робочому струму. При цьому транзистор може вийти з ладу. Відповідні ділянки характеристик на рисунку показані пунктирними лініями, вони не є робочими і звичайно на графіках не наводяться.

Робота транзистора, при якому емітерний перехід включений в прямому напрямку (UЕБ < 0), а колекторний – в зворотному (UКБ > 0), відповідає активному (підсилюючому) режиму, а коли обидва переходи виявляються прямо включеними (UЕБ < 0, UКБ < 0) – режиму насичення.

Вхідні статичні характеристики для схеми із спільним емітером є графіками залежності струму бази ІБ від напруги UБЕ при незмінному значенні UКЕ: ІБ = f(UБЕ) при UКЕ = const.

Якщо коло колектора розімкнене (ІК = 0), крива проходить через початок координат.

З ростом напруги UКЕ струм ІБ зменшується, оскільки при збільшенні UКЕ зростає напруга, що прикладається до колекторного переходу в зворотному напрямку, майже всі носії швидко втягуються в колектор і ймовірність їх рекомбінації в базі зменшується.

При UКЕ = 0 (колектор і емітер замкнені на коротко) і UБЕ > 0 обидва переходи з’єднані паралельно і приєднані до джерела в прямому напрямку.

При збільшені напруги на колекторі UКЕ характеристики зміщуються вправо і вниз, тобто струм ІБ зменшується. Це пояснюється звуженням ширини бази, що супроводжується ослабленням рекомбінації носіїв. Зміщення графіків вниз при малих напругах (UКБ < 1 В) відбувається тому, що обидва переходи включені зустрічно і базовий струм стає рівним різниці струмів: ІБ = ІЕІК. При подальшому збільшенні напруги UКЕ зсув вхідних характеристик незначний, і вони практично співпадають. Тому в довідниках звичайно наводяться одна-дві криві.

Вихідні статичні характеристики транзистора для схеми із спільним емітером складаються із залежностей струму колектора ІК від напруги між колектором і емітером при фіксованому струмі бази: ІК = f(UКЕ) при ІБ = const.

В схемі із спільним емітером напруга, що прикладається до колекторного переходу дорівнює UКЕ UБЕ, оскільки ці напруги між точками колектор–база виявляються включеними зустрічно. Тому при |UКЕ | < |UБЕ | напруга на колекторному переході відповідає прямій напрузі. Це зумовлює стрімке зростання струму на початковій ділянці – від UКЕ = 0 до |UКЕ | = |UБЕ |. Далі, при |UКЕ | > |UБЕ | (аж до допустимого значення UКЕ), крутизна характеристик зменшується, вони майже горизонтальні.

Положення кожної з вихідних характеристик залежить, головним чином, від струму бази (ІБ1 < IБ2 < … < IБ5).

На сімействі вихідних характеристик виділені три області, властиві трьом режимам роботи транзистора: режим відсічки (1), активний режим (підсилення) (2) і режим насичення (3). Графік, відповідний струму бази ІКБ 0, проходить через початок координат і при UКЕ > 1 В визначає зону відсічки. Активна зона розташована між зонами відсічки, насичення і лінією, яка визначає ІК через допустиму потужність, що розсіюється колектором (наводиться в довідниках).

Статичні характеристики транзистора в схемі із спільним колектором подібні характеристикам транзистора в схемі із спільним емітером. Вхідним колом транзистора є базово-колекторний перехід, що має великий внутрішній опір, оскільки виявляється включеним в зворотному напрямку. Керуючим струмом є невеликий струм бази; вихідні струми (ІЕ або ІК) відрізняються незначно.

Динамічними характеристикамитранзистора визначається режим роботи транзистора – динамічний режим, коли у вихідному колі є навантаження, а на вхід подається певний сигнал. Динамічний режим відрізняється від статичного сильним взаємним впливом параметрів транзистора і елементів схеми. В цьому режимі напруга джерела живлення ЕК (на рисунках для схем включення а, б, вЕ2) неперервно перерозподіляється між опором навантаження Rн і вихідними електродами транзистора у відповідності з виразом:

UКЕ= ЕКІКRн.

Наведений вираз є рівнянням динамічного режиму для вихідного кола. Зміна напруги на вході транзистора викликає відповідну зміну струму емітера, бази, а отже , і струму колектора ІК. Це призводить до зміни напруги на Rн, в результаті чого змінюється напруга UКЕ.

Побудова динамічних характеристик здійснюється з метою вибору оптимального (найкращого) режиму роботи транзистора. Початковими є дані про вхідний сигнал і потужність, що споживається навантаженням, а також статичні вхідні і вихідні характеристики та параметри транзистора, що наводяться в довідниках.

Найчастіше використовуються вихідні і вхідні динамічні характеристики.

З рівняння динамічного режиму випливає рівняння:

ІК= (ЕКUКЕ) / Rн= ЕК/ RнUКЕ/ Rн.

Пряма лінія, що відповідає останньому рівнянню, називається навантажувальною прямою або лінією навантаження. Вона уявляє собою вихідну динамічну характеристику і будується на сімействі статичних вихідних характеристик за двома точками – А і В. Розташування лінії навантаження на статичних характеристиках однозначно визначається напругою джерела живлення ЕК і опором резистора Rн. В точці А ІК = 0, а UКЕ = ЕК. Це відповідає закритому стану емітерного переходу транзистора. При цьому струм в опорі навантаження відсутній і падіння напруги на навантаженні дорівнює нулю. Отже, вся напруга джерела живлення ЕК виявляється прикладеною до ділянки колектор – емітер транзистора.

Точка перетину лінії навантаження із віссю струмів В є точка, для якої виконується умова ІК = ЕК / Rн, оскільки струм колектора у випадку повністю відкритого (або закороченого) транзистора обмежувався би тільки величиною опору Rн.

Всі проміжні точки лінії навантаження характеризують можливі напруги і струми у відповідних колах транзистора при подачі сигналу з урахуванням опору навантаження. Будь якому струму бази відповідає певне значення струму колектора і колекторної напруги. Так на рисунку показано, що струму бази ІБ2 відповідає напруга UКЕ(ІБ2) та струм через навантаження ІК(ІБ2).

Вхідна динамічна характеристика уявляє собою залежність вхідного струму від вхідної напруги в динамічному режимі при незмінних напрузі живлення і опорі навантаження.

 
 

Вхідна динамічна характеристика будується по точкам перетину лінії навантаження із статичними вихідними характеристиками. Для кожної напруги на колекторі за вихідною динамічною характеристикою визначається відповідний струм бази. Потім на вхідних статичних характеристиках відмічаються точки (А, В, С), що відповідають знайденим значенням струмів бази. Лінія АВС, яка з’єднує точки, є вхідною динамічною характеристикою транзистора (штрихова лінія на вхідній статичній характеристиці).

Оскільки вхідні статичні характеристики розташовуються досить щільно, іноді для спрощення аналізу роботи і розрахунку параметрів схеми з транзистором вхідну динамічну характеристику не будують, а приймають за таку одну із вхідних статичних характеристик, що відповідає деякій напрузі на колекторі, відмінній від нуля.

– Конец работы –

Эта тема принадлежит разделу:

Конспект лекцій з дисципліни Електротехніка, електроніка та мікропроцесорна техніка

ХЕРСОНСЬКИЙ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ... Кафедра енергетики та електротехніки...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Статичні і динамічні характеристики схем включення.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

КОНСПЕКТ ЛЕКЦІЙ
з дисципліни Електротехніка, електроніка та мікропроцесорна техніка    

Розрахунок.
Оскільки струм в опорі навантаження менший за струм стабілізації баретера, необхідно паралельно навантаженню включити опір R1, через який повинен протікати надлишковий струм І

Котушка індуктивності.
Будь–яка зміна струму і в колі з котушкою індуктивності викликає зміну магнітного потоку Ф, створеного цим струмом. Змінний магнітний потік пронизує всі витки котушки індуктивності і

Котушка індуктивності на змінному струмі
При проходженні змінного синусоїдального струму ЕРС самоіндукції повинна повністю урівноважувати прикладену напругу, тобто

Ємність
Основною технічною характеристикою конденсатора є його електроємність С (ще його номінальна (робоча напруга)). Ємність вимірюється в фарадах (Ф) або мікрофарадах (мкФ). Ємність зале

Конденсатор на змінному струмі
При підключенні до конденсатора змінної синусоїдальної напруги u = Um sin wt в колі з конденсатором виникає струм

Символічний метод
Вже можна передбачити, що при розрахунках кіл змінного струму необхідно буде використовувати складні перетворення з величинами, до яких входять тригонометричні функції, або виконувати графічні дії

Розрахунок.
Скористаємось спрощеною схемою заміщення і визначимо опір цієї схеми. Коефіцієнт трансформації k = U1 / U

Зміна вторинної напруги трансформатора
Величину вторинної напруги U2 навантаженого трансформатора іноді зручніше визначати не за розглянутою в прикладі методикою, а за готовою формулою. Познач

Трифазні трансформатори
При трансформації трифазного струму використовують або три однофазних трансформатори, або трифазний трансформатор з спільним магнітопроводом для всіх трьох фаз. Останній спосіб застосовується в уст

Навантажувальна здатність трансформатора
Номінальні параметри трансформатора Робота трансформатора супроводжується втратами енергії, що виділяється у вигляді тепла в обмотках і магнітопроводі. Втрати потужності в обмотках D

Q Принцип дії асинхронної машини.
q Магнітне поле, що обертається q Режими роботи асинхронної машини q Конструкція ротора q Механічні характеристики асинхронного двигуна. q Баланс активних потужн

Баланс активних потужностей асинхронного двигуна можна уявити таким рівнянням
Ре = DР1е + DРм + DР2е + Рмех

Багатополюсні генератори.
Втеперішній час на теплових електростанціях застосовуються головним чином двополюсні турбогенератори із швидкістю обертання n = 3000 об./хв. При двополюсному роторі один пов

Хрест-характеристика транзистора
Для практичного використання вольт-амперних характеристик транзистора в аналізі і розрахунку зручно використовувати суміщену хрест-характеристику, на якій в однаковому масштабі у відповідних квадра

Підсилювачі.
Пристрої, призначені для підсилення електричних сигналів мають назву підсилювачі. Процес підсилення є один з випадків процесу керування енергією і, в принципі полягає в то

Характеристики підсилювачів
· Викривлення, що виникають у підсилювачі внаслідок неоднакового підсилення сигналів різної частоти називаютьчастотними викривленнями.Вони виникають за рахунок реактивних елементів

Характеристики підсилювачів
· Викривлення, що виникають у підсилювачі внаслідок неоднакового підсилення сигналів різної частоти називаютьчастотними викривленнями.Вони виникають за рахунок реактивних елементів

Електронний генератор синусоїдальних електричних коливань
Самозбуджуємий генератор (автогенератор) синусоїдальних коливань уявляє собою резонансний підсилювач з додатним зворотним зв’язком без стороннього джерела вхідного сигналу.

Вступ до модуля “Мікропроцесорна техніка”.
Цей розділ принципово відрізняється від попередніх. Якщо в розділі “Основи електротехніки” розглядалась робота електротехнічних пристроїв з точки зору електроенергетики, а в розділ

Уявлення про інтегральні схеми
Інтегральна схема (ІС) – це мікроелектронний виріб, що виконує певну функцію по перетворенню і обробці сигналів і має високу щільність електрично з’єднаних мікромініатюрних радіоелектронних елемент

Уявлення про мікропроцесорні засоби
Розвиток технології і схемотехніки мікроелектронних схем призвів до створення великих інтегральних схем (ВІС), що являють собою універсальні за призначенням, функціонально закінчені пристрої і по с

Типова структура мікропроцесорного пристрою
На рисунку представлена спрощена типова структура мікропроцесорного пристрою (або системи), призначеного для обробки даних або керування деяким процесом. Приблизно таку ж структуру мають мікро-ЕОМ

Системи числення
Система числення – сукупність прийомів і правил зображення чисел цифровими знаками. Системи числення діляться на непозиційні і позиційні. Непозиційні системи ч

Таблиця 1. Таблиця відповідності чисел в різних системах числення
Основа 10-кова 2-кова 8-кова 16-кова Числа

Загальні відомості про уявлення інформації в МП-системах
Інформація в МП-системах являє собою дані, що підлягають обробці, і програми обробки цих даних. Як вже відмічалося, використовується цифровий спосіб представлення інформації, тобто і команди програ

Додаткова інформація
Арифметичні операції над двійковими числами відрізняються простотою і легкістю технічного виконання. Приклади: Додавання : 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1

Кодування чисел в МП-системах
Вихідні дані, а також проміжні результати в МП-системах можуть бути додатними і від’ємними. Для зображення знаку числа в розрядній сітці перед старшим цифровим розрядом вводиться додатковий знакови

Елементи алгебри логіки
Для математичного опису роботи МП-пристроїв, синтезу і аналізу схем широко використовується алгебра логіки (алгебра висловлювань, булева алгебра [Джордж Буль – англійський м

Логічні операції
Операція «НЕ» (інверсія, логічне заперечення, NOT). Нехай є деяке висловлювання А. Заперечення цього висловлювання позначається`

Ugrave; 1= 1
Правило логічного множення справедливе не тільки для двох співмножників, але і для будь-якої їх кількості, тобто A Ù B Ù

Uacute; 1= 1
Правило логічного додавання справедливе не тільки для двох доданків, але і для будь-якої їх кількості, тобто A Ú B Ú

Схемна реалізація логічних функцій на прикладі функцій “НЕ”, “І”, “АБО”, 3І–НЕ”, “3АБО–НЕ” та ін.
  Розглянемо схеми деяких логічних елементів на основі ІС, що виконують найпростіші логічні операції.

Тригерний пристрій та його схемна реалізація.
Тригер – електронний пристрій, за допомогою якого можна запам’ятовувати, зберігати і зчитувати двійкову інформацію. Він має два стійких стани рівноваги: один із стійких станів прий

Типи тригерів за способом функціонування.
Тригер може бути оснащений лічильним входом. При надходженні сигналу на цей вхід тригер змінює будь-який свій ст

Синхронний однотактний RS–тригер.
На рисункунаведена схема і умовне позначення синхронного однотактного RS–тригера, виконаного на елементах І–НЕ. Елементи 1 і 2 утворюють схему вхідної логіки RS–тригера, поб

Синхронний двотактний RS–тригер.
Двотактний RS–тригер на елементах І–НЕ: а) – схема двотактного RS–тригера; б) – умовне графічне позначення.

Т–тригер.
Це тригер з лічильним входом (однорозрядний лічильник). Він може бути побудований з використанням двотактного синхронного RS–тригера. Т–тригер реалізує функцію виду

D–тригер.
D–тригер на основі двотактного RS–тригера: а) – функціональна схема; б) – умовне графічне позначення.

JK–тригер.
Розповсюдженим типом тригера в системах інтегральних логічних елементів є універсальний двотактний JK–тригер а) – схемна реалізація; б) – умовне позначення:

Регістр як вузол МП-системи. Призначення та класифікація.
При виконанні різних арифметичних і логічних операцій і взагалі при обробці інформації виникає необхідність в зберіганні коду числа на протязі деякого часу. Іноді необхідно зсунути цей код вправо а

Регістри прийому і передачі інформації.
На схемах, що наводяться далі, будуть показані лише ті кола, про які безпосередньо йде мова. Якщо, наприклад, говориться, що регістр містить код слова, то існують кола, по яких цей код занос

Приклади схемної реалізації зсуваючого регістру
Зсуваючі регістри призначені для виконання операції зсуву коду слова, тобто для переміщення цифр слова в напрямку від старших до молодших розрядів (зсув вправо) або від молодших до

Реалізація порозрядних операцій в регістрах.
Звичайно, операція видачі коду з регістра об’єднується з операцією прийому цього коду на інший регістр. В процесі передачі інформації з регістра на регістр можлива змістовна переробкакодів слів. В

Виконання порозрядних операцій «логічне додавання», «логічне множення».
На рис. 1 наведена схема для реалізації виконання операцій порозрядного додавання і множення. В Рг1 записаний код числа x1, x

Виконання порозрядної операції «складання за mod 2».
Схема регістра, в якому виконується операція порозрядного додавання за mod 2 наведена на рис. 2. Нехай в регістр

Лічильник як вузол МП-системи. Призначення та класифікація
Лічильник уявляє собою пристрій, призначений для підрахунку числа сигналів, які надходять на його вхід, і фіксації цього числа у вигляді коду, що зберігається в тригерах. Кільк

Лічильник з безпосередніми зв’язками з послідовним переносом.
В цих лічильниках кожний наступний тригер (і+1) – го розряду запускається від інформаційних виходів (Q i ,

Лічильник з паралельним переносом.
Для прискорення спрацьовування лічильники виконують з паралельним переносом. На рис. 2 зображена схема чотирьохрозрядного лічильника на JK–тригерах з паралельним переносом. Як схеми І

Реверсивний лічильник з послідовним переносом.
В реверсивному лічильнику передбачена спеціальна перемикаюча схема для переключення лічильника або в режим додавання, або в режим віднімання.

Дешифратори. Класифікація.
Дешифратором називається комбінаційна схема, яка має n входів і до 2n виходів, і, яка перетворює n

Шифратори і перетворювачі кодів
Шифратори і перетворювачі кодів – це комбінаційні схеми, призначені для перетворення числової інформації з однієї двійкової форми в іншу. Розглянемо побудову методом синте

Мультиплексори
Мультиплексор – це комутатор інформаційних сигналів, що забезпечує передачу інформації, яка надходить по одній, вибраній з кількох, вхідній лінії зв’язку, на одну вихідну лінію. Вхідна лінія

Суматор як вузол МП-системи. Призначення та класифікація.
Суматор – електронний вузол, що виконує операцію сумування цифрових кодів двох чисел. Сумування полягає в порозрядному додаванні значень цих чисел і додаванні в кожному розряді одиниц

Однорозрядний комбінаційний суматор.
Це логічна схема, яка забезпечує отримання сигналів суми та переносу при одночасній подачі кодів слів-дод

Однорозрядний накопичуючий суматор.
Це логічна схема, в якій вхідні сигнали хі, уі, рі-1 надходять на вхід почергово і накопичую

Багаторозрядні суматори
В залежності від того, як передаються коди доданків, можуть бути два способи додавання, а відповідно два типу су

Запам’ятовуючі пристрої мікропроцесорних систем
Запам’ятовуючі пристрої (ЗП) – це найважливіша складова частина будь-якої мікропроцесорної системи. За функціональним призначенням всі ЗП можна поділити на такі

Оперативні запам’ятовуючі пристрої
За принципом зберігання інформації напівпровідникові ОЗП поділяються на динамічні і статичні. Динамічні ЗП побудовані на основі запам’ятовуючого ел

Постійні запам’ятовуючі пристрої
Постійні запам’ятовуючі пристрої (ПЗП) в МП-системах використовуються для зберігання програм та іншої незмінюваної інформації. Важлива перевага ПЗП в порівнянні з ОЗП – зберігання інф

Типова структура мікропроцесора.
Мікропроцесор (МП) – функціонально закінчений пристрій обробки інформації, керований командами програми, які по черзі надходять із запам’ятовуючого пристрою МП-системи. Конструктивн

Основні сигнали процесора.
При використанні конкретного МП необхідно ясно уявляти динаміку його роботи, тобто на яких шинах, в залежності від яких керуючих сигналів і коли МП буде видавати ту чи іншу інформацію. Це в подальш

Особливості побудови МП-систем
МП-система – це сукупність взаємодіючих ВІС МП–набору, яка організована в систему з мікропроцесором (вузол обробки інформації) (див. лекцію 18). До складу типової структури МП–системи входять мікро

Мікропроцесорні засоби в системах керування
Мікропроцесорні засоби все частіше використовуються в системах керування, в тому числі і системах, що працюють в реальному часі. МП-системою реального часун

Принцип перетворення напруги в цифровий код.
Принцип перетворення напруги в цифровий код полягає в наступному. Нехай датчик вимірює значення деякого параметра, який змінюється довільно, і видає напругу пропорційну вимірюваній

Перетворювачі напруги в код.
Схеми перетворювача напруги в код ступінчастого типу наведена на рис. 2-а. На вхід схеми подається напруга Uвх, яка за допомогою часово-імпульсного перетворювача

Перетворювачі кута повороту в код.
Широке розповсюдження отримали перетворювачі кутових переміщень в код, що уявляють собою кодуючий диск, який закріплений на валу вимірювального механізму. Диск розбивається на концентричні

Цифрово-аналогові перетворювачі.
Двійкові коди в аналогові еквіваленти перетворюються різними способами, але всі вони основані на додаванні аналогових складових, пропорційних деяким двійковим приростам (елементам) вихідного двійко

Перетворювач коду в напругу.
Приклад схеми перетворювача двійкового коду в напругу представлений на рис. 5. Рис. 5. Схема

Перетворювач коду в кут повороту.
Перетворювачі коду в кут повороту часто називають цифровими слідкуючими системами. Одна з можливих схем цифрової слідкуючої системи наведена на рис. 6.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги