рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Додаткова інформація

Додаткова інформація - раздел Философия, Конспект лекцій з дисципліни Електротехніка, електроніка та мікропроцесорна техніка Арифметичні Операції Над Двійковими Числами Відрізняються Простотою І Ле...


Арифметичні операції над двійковими числами відрізняються простотою і легкістю технічного виконання. Приклади:

Додавання :

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 10 – відбувається переніс одиниці в старший розряд

Віднімання :

0 – 0 = 0

1 – 0 = 1

1 – 1 = 0

10 – 1 = 1 – відбувається позичка одиниці в старшому розряді

Множення :

0 ´ 0 = 0

0 ´ 1 = 0

1 ´ 0 = 0

1 ´ 1 = 1

1 ´ 1 = 1

В двійково-кодованих системах числення кожна цифра числа уявляється в двійковій системі числення.

16-кова і 8-кова системи числення є допоміжними системами при ручному записі. Зручність їх використання в тому, що запис числа коротший, а перетворення числа (“ 2 ” « “ 8 ”, “ 2 ” « ” 16 ”) нескладне – кожна цифра 8- або 16-кового числа записується як двійкове число відповідно наведеним таблицям

При записі двійкового числа у 16-ковій (8-ковій) системі числення число розбивається ліворуч і праворуч від коми на четвірки (трійки) цифр і кожна тетрада (тріада) двійкових цифр записується як одна 16-кова (8-кова) цифра.

Приклади:

A5,2B16 Û 1010 0101,0010 10112.

123,568 Û 001 010 011,101 1102;


 

Таблиця 2. Таблиця відповідності 16- та 8-кових цифр і двійкових комбінацій


16-кова цифра 2-кова комбінація 16-кова цифра 2-кова комбінація   8-кова цифра 2-кова комбінація
 
 
A  
B  
C  
D  
E  
F  

Двійкове число або закодоване керуюче “слово” в МП-системах представляються набором цифр (1 і 0). У цифрових пристроях коди представляються у вигляді двох різних рівнів напруг або струму або у вигляді імпульсів. Один рівень або наявність імпульсу означає 1; інший рівень або відсутність імпульсу 0.

0 і 1 можуть відрізнятися також напрямом або імпульсами протилежного знаку. У МП-схемах змінні і відповідні ним сигнали змінюються не безперервно, а лише в дискретні моменти часу t=0, 1, 2, …, i, ….

Часовий інтервал між двома сусідніми моментами дискретного часу називається тактом або періодом представлення інформації.. Дискретний час можна представити сукупністю пронумерованих точок на осі часу, відповідних послідовним тактовим моментам. Часові інтервали між періодами представлення інформації можуть бути довільними.

Практично у всіх випадках МП-системи містять спеціальний блок, що виробляє тактові синхронізуючі імпульси (СІ), що відмічають моменти дискретного часу.

У цифрових пристроях застосовують потенційний і імпульсний способи представлення інформації.

При потенційному способі (рис. 2-а) 0 і 1 відповідають низька U0 і висока U1 напруги в певній точці схеми (потенційний код).

При імпульсному способі (рис. 2-б) 1 і 0 відповідають наявність і відсутність електричного імпульсу в певній точці схеми (імпульсний код).

Схеми МП-систем відповідно до типу сигналів, що використовуються для представлення інформації прийнято ділити на імпульсні, потенційні і імпульсно-потенційних. У перших схемах використовуються тільки імпульсні сигнали, у других – тільки потенційні, а в третіх – і ті і інші.

 
 

Для представлення і передачі кодів двійкових слів, які складаються з кількох двійкових розрядів, застосовують послідовний і паралельний способи (послідовний і паралельний коди).

 

Часові діаграми потенційного (а) та імпульсного (б) сигналів

 
 

Послідовні імпульсний (а) і потенційний (б) коди.

При послідовному способі кожний часовий такт використовується для відображення одного розряду слова, всі розряди якого передаються по одному каналу послідовно і фіксуються одним і тим же елементом. Номер розряду визначається номером такту, який відлічується від деякого нульового положення, співпадаючим з початком слова. Отже, двійковий код слова представляється у вигляді деякої часової послідовності потенційних або імпульсних сигналів, відповідних значенням цифр в розрядах слів.

На рисунку показані приклади послідовного імпульсного (рис. а) і послідовного потенціального кодів (рис. б), що з’являються дискретні моменти часу одночасно з синхроімпульсами (СІ).

При паралельному способі всі розряди двійкового коду слова передаються одночасно в одному часовому такті, фіксуються окремими елементами і проходять через окремі канали, кожний з яких призначений для представлення і передачі тільки одного розряду слова. При цьому код слова розгортається не в часі, а в просторі, так як значення цифр всіх розрядів слова передаються по кільком електричним колам одночасно (кількість кіл збігається числу розрядів).

Пристрої МП-систем в залежності від коду, що застосовується, називають пристроями послідовної або паралельної дії.

Для досягнення високої швидкодії основні пристрої МП-систем будуються паралельними. Однак вони вимагають більшої кількості апаратури, ніж пристрої послідовної дії, оскільки при паралельному коді треба мати стільки шин, а також запам’ятовуючих і перетворюючих елементів, скільки розрядів в слові. Тому в деяких пристроях застосовують послідовно-паралельний код, при якому слова розбиваються на «склади». «Склади» передаються, а іноді і обробляються послідовно. При цьому кожний «склад» передається паралельним кодом.

Значення одного двійкового розряду називається бітом. З точки зору інформатики – це мінімальний обсяг інформації, яку можна зберігати, обробляти і передавати (відповідь на питання: “так чи ні?”). Як правило, обробка інформації здійснюється по-байтно або в обсягах, кратних байту. Байтом називається вісім суміжних двійкових розрядів. Похідні від цієї одиниці використовуються для визначення місткості запам’ятовуючих пристроїв:

1 Кбайт = 1024 байт;

1 Мбайт = 1024 Кбайт;

1 Гбайт = 1024 Мбайт.

Вічка постійних і оперативних запам’ятовуючих пристроїв, де зберігаються байти, визначаються номером (адресою).

Для представлення чисел і командних слів в МП-системах використовується один або кілька байтів.

Числа в МП-системах можуть бути представлені у формі з фіксованою або плаваючою крапкою.

Фіксована форма запису – це звична для нас форма, в якій положення крапки, що відділяє цілу частину числа від дробової, фіксується в певному місці відносно розрядів числа. Звичайно мається на увазі (тобто спеціально не позначається), що крапка знаходиться або перед старшим розрядом, або після молодшого. В першому випадку це дробові числа, а в другому – цілі числа.

Якщо крапка фіксована перед старшим розрядом, то по абсолютному значенню числа можна представити в діапазоні , що відповідає десятковим значенням (n – число розрядів).

Якщо крапка фіксована після молодшого розряду, то в десятковому зображенні числа можуть бути представлені в діапазоні . Якщо значення чисел перевищує верхню межу діапазону, то говорять, що сталося переповнення розрядної сітки.

Перевага форми представлення чисел з фіксованою крапкою в тому, що її застосування значно спрощує логічні і керуючі схеми МП. Це обумовлено тим, що арифметичні і інші операції здійснюються значно простіше, ніж при застосуванні форми з плаваючою крапкою. Наприклад, можна складати і віднімати числа без попереднього вирівнювання їх порядків, так як всі однойменні розряди всіх чисел займають постійні і однакові позиції.

Однак при підготовці задач до розв’язання необхідно слідкувати за тим, щоб перед додаванням або відніманням вихідні числа мали однакові масштаби. Крім того, треба слідкувати за можливими значеннями проміжних результатів і через підбір масштабу виключати переповнення розрядної сітки.

Представлення чисел у формі з фіксованою крапкою широко застосовується в спеціалізованих МП і МП-системах, де коло задач є наперед визначеним і можливо врахувати діапазон зміни чисел.

Для представлення чисел у формі з фіксованою крапкою використовується один або кілька байтів. На рис. (а) показана розрядна сітка дробових чисел у вигляді 4-байтного (32 біти) слова, включаючи знак перед старшим розрядом. Розряді пронумеровані зліва направо. Для кодування знаку використовується “знаковий” розряд в цьому розряді 0 відповідає плюсу, а 1 – мінусу. На розрядній сітці вказана вага кожного розряду. Діапазон додатних чисел, представлених в цій розрядній сітці, дорівнює 0 £ Х £ 1– 2–31.

Представлення двійкового числа у формі з фіксованою крапкою.

а – числа по модулю менше 1; б – цілі числа.

На рис. (б) показана розрядна сітка для представлення 32-розрядних цілих чисел, включаючи знак. В цьому випадку діапазон представлення додатних чисел дорівнює , що відповідає діапазону абсолютних десяткових чисел приблизно від 0 до 2,15´10 9.

Використання формату з фіксованою крапкою дозволяє підвищити швидкодію МП-системи, оскільки операції з такими числами виконуються швидше.

Представлення чисел у формі з плаваючою крапкою. В МП-системах широкого застосування (наприклад, персональних комп’ютерах) основна форма представлення чисел – з плаваючою крапкою. В цьому випадку число записується в розрядну сітку у вигляді двох груп цифр. Одна група відповідає порядку числа, друга – мантисі. Для зображення чисел використовується формульна залежність X=q p´M, де q – основа системи числення; p – порядок числа (ціле число) M – мантиса числа (дробове число). Так наприклад, у 10-вій системі числення число 1234,567 по цій формулі можна представити як 104´0,1234567; 0,0009876 = 10-3´0,9876. Порядок р разом із знаком вказує дійсне положення крапки в числі Х.

На рисунку показана розрядна сітка двійкового числа у формі з плаваючою крапкою. Мантиса числа менша за одиницю, її знак відповідає знаку числа. Значення порядку р, що уявляє ціле число, визначає положення крапки в числі. Із зміною порядку крапка немовби “плаває” в зображенні числа.

При представленні чисел у формі з плаваючою крапкою в МП-системах досягається широкий діапазон зображення чисел без застосування масштабних коефіцієнтів. Однак структура таких МП-систем значно ускладнюється, так як при виконанні операцій над числами з плаваючою крапкою необхідно мати окремі пристрої для виконання операцій як над мантисами, так і над порядками чисел. При цьому швидкість виконання операцій додавання і віднімання нижче, ніж в МП-системах з формою представлення чисел з фіксованою крапкою, що пояснюється необхідністю проведення додаткових дій по нормалізації чисел, вирівнюванню порядків і т.д.

Для спрощення операцій над порядками їх зводять до дій над цілими додатними числами, використовуючи уявлення чисел із зміщеним порядком. Для цього при записі чисел до їх порядків додається додатне число N = 2 k, де k – кількість розрядів, що відводяться на порядок. Це дозволяє при виконанні арифметичних дій над порядком код знаку порядку вважати старшим розрядом числа, що визначає порядок.

При зображенні з порядком одне і теж число може бути представлене з різними порядками (0,0009876 = 10-3´0,9876 = 10 -4´9,876 = 10 -2´0,09876 = …). Для ліквідації подібної неоднозначності представлення чисел їх приводять завжди до нормалізованого виду, при якому старші розряди мантиси завжди повинні бути значущими. Нормалізований вид числа в наведеному вище прикладі виділений шрифтом.

Приведення числа до нормалізованого виду називається нормалізацією. Для нормалізації будь-який зсув мантиси на розряд відповідає зменшенню або збільшенню на одиницю порядку в залежності від зсуву мантиси вправо чи вліво.

В МП-системах, іноді, передбачено використання двійково-десяткового коду. В двійково-десятковому коді десяткові цифри числа від 0 до 9 представляються 4-розрядними двійковими комбінаціями від 0000 до 1001, тобто двійковими еквівалентами десяти перших 16-кових цифр (див. табл. 2). Коди від 1010 до 1111 не можуть використовуватись як цифри і використовуються як коди знаку числа: коди 1011 і 1101 представляють знак мінус, інші коди 1100 і 1010 – знак плюс. Вибір кодів знаків залежить від вибору системи кодування. Перетворення з двійково-десяткової системи в десяткову (і зворотнє перетворення) виконується шляхом прямої заміни чотирьох двійкових цифр однією десятковою цифрою (або зворотньою заміною). Дві двійково-десяткові цифри складають 1 байт. Десяткове число може займати в двійково-десятковому кодуванні один і більше байтів. Складання двійково-десяткових чисел, що мають один десятковий розряд, виконується так же, як і складання 4-розрядних двійкових чисел без знаку, за винятком того, що при отриманні результату, що перебільшує 1001, необхідно робити корекцію. Результат коректується через додавання двійкового коду числа 6, тобто коду 0110. Якщо первинне двійкове додавання або додавання коректуючого числа призводить до виникнення переносу, то при складанні багаторозрядних двійково-десяткових чисел здійснюється переніс в наступний десятковий розряд.

– Конец работы –

Эта тема принадлежит разделу:

Конспект лекцій з дисципліни Електротехніка, електроніка та мікропроцесорна техніка

ХЕРСОНСЬКИЙ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ... Кафедра енергетики та електротехніки...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Додаткова інформація

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

КОНСПЕКТ ЛЕКЦІЙ
з дисципліни Електротехніка, електроніка та мікропроцесорна техніка    

Розрахунок.
Оскільки струм в опорі навантаження менший за струм стабілізації баретера, необхідно паралельно навантаженню включити опір R1, через який повинен протікати надлишковий струм І

Котушка індуктивності.
Будь–яка зміна струму і в колі з котушкою індуктивності викликає зміну магнітного потоку Ф, створеного цим струмом. Змінний магнітний потік пронизує всі витки котушки індуктивності і

Котушка індуктивності на змінному струмі
При проходженні змінного синусоїдального струму ЕРС самоіндукції повинна повністю урівноважувати прикладену напругу, тобто

Ємність
Основною технічною характеристикою конденсатора є його електроємність С (ще його номінальна (робоча напруга)). Ємність вимірюється в фарадах (Ф) або мікрофарадах (мкФ). Ємність зале

Конденсатор на змінному струмі
При підключенні до конденсатора змінної синусоїдальної напруги u = Um sin wt в колі з конденсатором виникає струм

Символічний метод
Вже можна передбачити, що при розрахунках кіл змінного струму необхідно буде використовувати складні перетворення з величинами, до яких входять тригонометричні функції, або виконувати графічні дії

Розрахунок.
Скористаємось спрощеною схемою заміщення і визначимо опір цієї схеми. Коефіцієнт трансформації k = U1 / U

Зміна вторинної напруги трансформатора
Величину вторинної напруги U2 навантаженого трансформатора іноді зручніше визначати не за розглянутою в прикладі методикою, а за готовою формулою. Познач

Трифазні трансформатори
При трансформації трифазного струму використовують або три однофазних трансформатори, або трифазний трансформатор з спільним магнітопроводом для всіх трьох фаз. Останній спосіб застосовується в уст

Навантажувальна здатність трансформатора
Номінальні параметри трансформатора Робота трансформатора супроводжується втратами енергії, що виділяється у вигляді тепла в обмотках і магнітопроводі. Втрати потужності в обмотках D

Q Принцип дії асинхронної машини.
q Магнітне поле, що обертається q Режими роботи асинхронної машини q Конструкція ротора q Механічні характеристики асинхронного двигуна. q Баланс активних потужн

Баланс активних потужностей асинхронного двигуна можна уявити таким рівнянням
Ре = DР1е + DРм + DР2е + Рмех

Багатополюсні генератори.
Втеперішній час на теплових електростанціях застосовуються головним чином двополюсні турбогенератори із швидкістю обертання n = 3000 об./хв. При двополюсному роторі один пов

Статичні і динамічні характеристики схем включення.
Вольт-амперні характеристики транзисторів розділяють на статичні і динамічні. Статичні характеристики є графічним відображенням залежностей між струмами і напругами на

Хрест-характеристика транзистора
Для практичного використання вольт-амперних характеристик транзистора в аналізі і розрахунку зручно використовувати суміщену хрест-характеристику, на якій в однаковому масштабі у відповідних квадра

Підсилювачі.
Пристрої, призначені для підсилення електричних сигналів мають назву підсилювачі. Процес підсилення є один з випадків процесу керування енергією і, в принципі полягає в то

Характеристики підсилювачів
· Викривлення, що виникають у підсилювачі внаслідок неоднакового підсилення сигналів різної частоти називаютьчастотними викривленнями.Вони виникають за рахунок реактивних елементів

Характеристики підсилювачів
· Викривлення, що виникають у підсилювачі внаслідок неоднакового підсилення сигналів різної частоти називаютьчастотними викривленнями.Вони виникають за рахунок реактивних елементів

Електронний генератор синусоїдальних електричних коливань
Самозбуджуємий генератор (автогенератор) синусоїдальних коливань уявляє собою резонансний підсилювач з додатним зворотним зв’язком без стороннього джерела вхідного сигналу.

Вступ до модуля “Мікропроцесорна техніка”.
Цей розділ принципово відрізняється від попередніх. Якщо в розділі “Основи електротехніки” розглядалась робота електротехнічних пристроїв з точки зору електроенергетики, а в розділ

Уявлення про інтегральні схеми
Інтегральна схема (ІС) – це мікроелектронний виріб, що виконує певну функцію по перетворенню і обробці сигналів і має високу щільність електрично з’єднаних мікромініатюрних радіоелектронних елемент

Уявлення про мікропроцесорні засоби
Розвиток технології і схемотехніки мікроелектронних схем призвів до створення великих інтегральних схем (ВІС), що являють собою універсальні за призначенням, функціонально закінчені пристрої і по с

Типова структура мікропроцесорного пристрою
На рисунку представлена спрощена типова структура мікропроцесорного пристрою (або системи), призначеного для обробки даних або керування деяким процесом. Приблизно таку ж структуру мають мікро-ЕОМ

Системи числення
Система числення – сукупність прийомів і правил зображення чисел цифровими знаками. Системи числення діляться на непозиційні і позиційні. Непозиційні системи ч

Таблиця 1. Таблиця відповідності чисел в різних системах числення
Основа 10-кова 2-кова 8-кова 16-кова Числа

Загальні відомості про уявлення інформації в МП-системах
Інформація в МП-системах являє собою дані, що підлягають обробці, і програми обробки цих даних. Як вже відмічалося, використовується цифровий спосіб представлення інформації, тобто і команди програ

Кодування чисел в МП-системах
Вихідні дані, а також проміжні результати в МП-системах можуть бути додатними і від’ємними. Для зображення знаку числа в розрядній сітці перед старшим цифровим розрядом вводиться додатковий знакови

Елементи алгебри логіки
Для математичного опису роботи МП-пристроїв, синтезу і аналізу схем широко використовується алгебра логіки (алгебра висловлювань, булева алгебра [Джордж Буль – англійський м

Логічні операції
Операція «НЕ» (інверсія, логічне заперечення, NOT). Нехай є деяке висловлювання А. Заперечення цього висловлювання позначається`

Ugrave; 1= 1
Правило логічного множення справедливе не тільки для двох співмножників, але і для будь-якої їх кількості, тобто A Ù B Ù

Uacute; 1= 1
Правило логічного додавання справедливе не тільки для двох доданків, але і для будь-якої їх кількості, тобто A Ú B Ú

Схемна реалізація логічних функцій на прикладі функцій “НЕ”, “І”, “АБО”, 3І–НЕ”, “3АБО–НЕ” та ін.
  Розглянемо схеми деяких логічних елементів на основі ІС, що виконують найпростіші логічні операції.

Тригерний пристрій та його схемна реалізація.
Тригер – електронний пристрій, за допомогою якого можна запам’ятовувати, зберігати і зчитувати двійкову інформацію. Він має два стійких стани рівноваги: один із стійких станів прий

Типи тригерів за способом функціонування.
Тригер може бути оснащений лічильним входом. При надходженні сигналу на цей вхід тригер змінює будь-який свій ст

Синхронний однотактний RS–тригер.
На рисункунаведена схема і умовне позначення синхронного однотактного RS–тригера, виконаного на елементах І–НЕ. Елементи 1 і 2 утворюють схему вхідної логіки RS–тригера, поб

Синхронний двотактний RS–тригер.
Двотактний RS–тригер на елементах І–НЕ: а) – схема двотактного RS–тригера; б) – умовне графічне позначення.

Т–тригер.
Це тригер з лічильним входом (однорозрядний лічильник). Він може бути побудований з використанням двотактного синхронного RS–тригера. Т–тригер реалізує функцію виду

D–тригер.
D–тригер на основі двотактного RS–тригера: а) – функціональна схема; б) – умовне графічне позначення.

JK–тригер.
Розповсюдженим типом тригера в системах інтегральних логічних елементів є універсальний двотактний JK–тригер а) – схемна реалізація; б) – умовне позначення:

Регістр як вузол МП-системи. Призначення та класифікація.
При виконанні різних арифметичних і логічних операцій і взагалі при обробці інформації виникає необхідність в зберіганні коду числа на протязі деякого часу. Іноді необхідно зсунути цей код вправо а

Регістри прийому і передачі інформації.
На схемах, що наводяться далі, будуть показані лише ті кола, про які безпосередньо йде мова. Якщо, наприклад, говориться, що регістр містить код слова, то існують кола, по яких цей код занос

Приклади схемної реалізації зсуваючого регістру
Зсуваючі регістри призначені для виконання операції зсуву коду слова, тобто для переміщення цифр слова в напрямку від старших до молодших розрядів (зсув вправо) або від молодших до

Реалізація порозрядних операцій в регістрах.
Звичайно, операція видачі коду з регістра об’єднується з операцією прийому цього коду на інший регістр. В процесі передачі інформації з регістра на регістр можлива змістовна переробкакодів слів. В

Виконання порозрядних операцій «логічне додавання», «логічне множення».
На рис. 1 наведена схема для реалізації виконання операцій порозрядного додавання і множення. В Рг1 записаний код числа x1, x

Виконання порозрядної операції «складання за mod 2».
Схема регістра, в якому виконується операція порозрядного додавання за mod 2 наведена на рис. 2. Нехай в регістр

Лічильник як вузол МП-системи. Призначення та класифікація
Лічильник уявляє собою пристрій, призначений для підрахунку числа сигналів, які надходять на його вхід, і фіксації цього числа у вигляді коду, що зберігається в тригерах. Кільк

Лічильник з безпосередніми зв’язками з послідовним переносом.
В цих лічильниках кожний наступний тригер (і+1) – го розряду запускається від інформаційних виходів (Q i ,

Лічильник з паралельним переносом.
Для прискорення спрацьовування лічильники виконують з паралельним переносом. На рис. 2 зображена схема чотирьохрозрядного лічильника на JK–тригерах з паралельним переносом. Як схеми І

Реверсивний лічильник з послідовним переносом.
В реверсивному лічильнику передбачена спеціальна перемикаюча схема для переключення лічильника або в режим додавання, або в режим віднімання.

Дешифратори. Класифікація.
Дешифратором називається комбінаційна схема, яка має n входів і до 2n виходів, і, яка перетворює n

Шифратори і перетворювачі кодів
Шифратори і перетворювачі кодів – це комбінаційні схеми, призначені для перетворення числової інформації з однієї двійкової форми в іншу. Розглянемо побудову методом синте

Мультиплексори
Мультиплексор – це комутатор інформаційних сигналів, що забезпечує передачу інформації, яка надходить по одній, вибраній з кількох, вхідній лінії зв’язку, на одну вихідну лінію. Вхідна лінія

Суматор як вузол МП-системи. Призначення та класифікація.
Суматор – електронний вузол, що виконує операцію сумування цифрових кодів двох чисел. Сумування полягає в порозрядному додаванні значень цих чисел і додаванні в кожному розряді одиниц

Однорозрядний комбінаційний суматор.
Це логічна схема, яка забезпечує отримання сигналів суми та переносу при одночасній подачі кодів слів-дод

Однорозрядний накопичуючий суматор.
Це логічна схема, в якій вхідні сигнали хі, уі, рі-1 надходять на вхід почергово і накопичую

Багаторозрядні суматори
В залежності від того, як передаються коди доданків, можуть бути два способи додавання, а відповідно два типу су

Запам’ятовуючі пристрої мікропроцесорних систем
Запам’ятовуючі пристрої (ЗП) – це найважливіша складова частина будь-якої мікропроцесорної системи. За функціональним призначенням всі ЗП можна поділити на такі

Оперативні запам’ятовуючі пристрої
За принципом зберігання інформації напівпровідникові ОЗП поділяються на динамічні і статичні. Динамічні ЗП побудовані на основі запам’ятовуючого ел

Постійні запам’ятовуючі пристрої
Постійні запам’ятовуючі пристрої (ПЗП) в МП-системах використовуються для зберігання програм та іншої незмінюваної інформації. Важлива перевага ПЗП в порівнянні з ОЗП – зберігання інф

Типова структура мікропроцесора.
Мікропроцесор (МП) – функціонально закінчений пристрій обробки інформації, керований командами програми, які по черзі надходять із запам’ятовуючого пристрою МП-системи. Конструктивн

Основні сигнали процесора.
При використанні конкретного МП необхідно ясно уявляти динаміку його роботи, тобто на яких шинах, в залежності від яких керуючих сигналів і коли МП буде видавати ту чи іншу інформацію. Це в подальш

Особливості побудови МП-систем
МП-система – це сукупність взаємодіючих ВІС МП–набору, яка організована в систему з мікропроцесором (вузол обробки інформації) (див. лекцію 18). До складу типової структури МП–системи входять мікро

Мікропроцесорні засоби в системах керування
Мікропроцесорні засоби все частіше використовуються в системах керування, в тому числі і системах, що працюють в реальному часі. МП-системою реального часун

Принцип перетворення напруги в цифровий код.
Принцип перетворення напруги в цифровий код полягає в наступному. Нехай датчик вимірює значення деякого параметра, який змінюється довільно, і видає напругу пропорційну вимірюваній

Перетворювачі напруги в код.
Схеми перетворювача напруги в код ступінчастого типу наведена на рис. 2-а. На вхід схеми подається напруга Uвх, яка за допомогою часово-імпульсного перетворювача

Перетворювачі кута повороту в код.
Широке розповсюдження отримали перетворювачі кутових переміщень в код, що уявляють собою кодуючий диск, який закріплений на валу вимірювального механізму. Диск розбивається на концентричні

Цифрово-аналогові перетворювачі.
Двійкові коди в аналогові еквіваленти перетворюються різними способами, але всі вони основані на додаванні аналогових складових, пропорційних деяким двійковим приростам (елементам) вихідного двійко

Перетворювач коду в напругу.
Приклад схеми перетворювача двійкового коду в напругу представлений на рис. 5. Рис. 5. Схема

Перетворювач коду в кут повороту.
Перетворювачі коду в кут повороту часто називають цифровими слідкуючими системами. Одна з можливих схем цифрової слідкуючої системи наведена на рис. 6.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги