рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Средняя длина свободного пробега молекул газа. Понятие о вакууме

Средняя длина свободного пробега молекул газа. Понятие о вакууме - раздел Образование, Основные положения молекулярно-кинетической теории. Масса и размер молекул Под Средней Длиной Свободного Пробега Понимают Среднее Расстояние, Которое Пр...

Под средней длиной свободного пробега понимают среднее расстояние, которое проходит молекула между двумя последовательными соударениями.

За секунду молекула в среднем проходит расстояние, численно равное ее средней скорости . Если за это же время она испытает в среднем столкновений с другими молекулами, то ее средняя длина свободного пробега , очевидно, будет равна

   
Предположим, что все молекулы, кроме рассматриваемой, неподвижны. Молекулы будем считать шарами с диаметром d. Столкновения будут происходить всякий раз, когда центр неподвижной молекулы окажется на расстоянии меньшем или равном d от прямой, вдоль которой двигается центр рассматриваемой молекулы. При столкновениях молекула изменяет направление своего движения и затем движется прямолинейно до следующего столкновения. Поэтому центр движущейся молекулы ввиду столкновений движется по ломаной линии (рис. 1).
 

Молекула столкнется со всеми неподвижными молекулами, центры которых находятся в пределах ломаного цилиндра диаметром 2d. За секунду молекула проходит путь, равный . Поэтому число происходящих за это время столкновений равно числу молекул, центры которых попадают внутрь ломаного цилиндра, имеющего суммарную длину и радиус d. Его объем примем равным объему соответствующего спрямленного цилиндра, т. е. равным Если в единице объема газа находится n молекул, то число столкновений рассматриваемой молекулы за одну секунду будет равно

 

В действительности движутся все молекулы. Поэтому число столкновений за одну секунду будет несколько большим полученной величины, так как вследствие движения окружающих молекул рассматриваемая молекула испытала бы некоторое число соударений даже в том случае, если бы она сама оставалась неподвижной.

Предположение о неподвижности всех молекул, с которыми сталкивается рассматриваемая молекула, будет снято, если в формулу (3.1.2) вместо средней скорости представить среднюю скорость относительного движения рассматриваемой молекулы. В самом деле, если налетающая молекула движется со средней относительной скоростью , то молекула, с которой она сталкивается, оказывается покоящейся, что и предполагалось при получении формулы (3.1.2). Поэтому формулу (3.1.2) следует написать в виде:

     

Предположим, что скорости молекул до столкновения были и Тогда Из треугольника скоростей имеем (рис. 2)

Так как углы и скорости и , с которыми сталкиваются молекулы, очевидно, являются независимыми случайными величинами, то среднее от произведения этих величин равно произведению их средних. Поэтому

С учетом последнего равенства формулу (3.1.4) можно переписать в виде: так как Cредняя квадратичная скорость пропорциональна средней скорости, т. е. . Поэтому соотношение (3.1.6) можно представить так: С учетом последнего выражения формула для средней длины свободного пробега приобретает вид: Для идеального газа . ПоэтомуОтсюда видно, что при изотермическом расширении (сжатии) средняя длина свободного пробега растет (убывает). Как было отмечено во введении, эффективный диаметр молекул убывает с ростом температуры. Поэтому при заданной концентрации молекул средняя длина свободного пробега увеличивается с ростом температуры. Вычисление средней длины свободного пробега для азота (d = 3•10-10 м), находящегося при нормальных условиях (р = 1,01•105 Па, Т = 273,15 К) дает: , а для числа столкновений за одну секунду: . Таким образом, средняя длина свободного пробега молекул при нормальных условиях составляет доли микрон, а число столкновений – несколько миллиардов в секунду. Поэтому процессы выравнивания температур (теплопроводность), скоростей движения слоев газа (вязкое трение) и концентраций (диффузия) являются достаточно медленными, что подтверждается опытом.

 

Вакуум в переводе с латинского означает «пустота». В практике под вакуумом понимают состояние разреженного газа, которое характеризуется давлением ниже атмосферного (область давлений ниже П а ). В зависимости от степени разрежения газа различают низкий, средний и высокий вакуум. Эти понятия являются относительными и определяются соотношением между средней длиной свободного пути молекул и линейными размерами сосуда, в котором заключен газ. Под средней длиной свободного пути молекул понимают среднее расстояние, которое проходит молекула между двумя соударениями при своем непрерывном хаотическом движении. Если средняя длина свободного пути молекул значительно меньше линейных размеров сосуда, такое состояние газ а называется низким вакуумом , если средняя длина свободного пути молекул значительно превышае т линейные размеры сосуда,— высоким вакуумом . Разреженност ь газа в сосуде, при которой средняя длина свободного пути молекул сравнима с линейными размерами сосуда, называется средним вакуумом. Очевидно, что чем больше молекул в единице объема, тем ч а ще происходят их взаимные соударения и тем меньший путь проходит молекула между двумя соударениями. Следовательно, средняя длина свободного пути молекул обратно пропорциональна давлению газа.В зависимости от соотношения между средней длиной свободного пути и размерами сосуда изменяются многие свойства газа и явления, происходящие в газовой среде. Например, с повышением вакуума увеличивается скорость испарения веществ. Н а и б о л ь ш а я скорость испарения вещества будет в высоком вакууме, когда спарившиеся молекулы не возвращаются на поверхность, с которой происходит испарение. Удаление газ а из замкнутого объема, связанное с уменьшением в нем молекулярной концентрации и давления газа, называется процессом откачки . Га з из сосудов удаляют специальными вакуумными насосами.

 

– Конец работы –

Эта тема принадлежит разделу:

Основные положения молекулярно-кинетической теории. Масса и размер молекул

М К т Изучает свойства вещества давление температуру и так далее как суммарный результат действий молекул при этом пользуется статическим...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Средняя длина свободного пробега молекул газа. Понятие о вакууме

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные положения молекулярно-кинетической теории
1. Все вещества состоят из мельчайших частиц - атомов и молекул. 2. Молекулы и атомы любого вещества находятся в непрерывном хаотическом движении, которое называется тепловым движением

Масса и размеры молекул
Для характеристики масс атомов и молекул применяются следующие величины: Атомная масса – масса атома вещества, выраженная в а.е.м. Молекулярная масса – масса

Термодинамические параметры и процессы. Урав-е сост-я идеального газа.
Для описания состояния термодинамической системы вводятся физические величины, которые называются термодинамическими параметрами или параметрами состояния системы. Обычно в качестве термодин

Основное ур-е молекулярно-кинетической теории гага.
1) Молекулы газа движутся только вдоль трех взаимно перпендикулярных направлений. Если в сосуде содержится N молекул, то в любой момент времени вдоль каждой из осей координат будет двигаться

Закон равномерного распределения энергии по степеням свободы. Внутренняя энергия ИГ
Числом степеней свободы i системы называется количество независимых величин, с помощью которых может быть задано положение системы. Так, положение в пространстве материальной точки полностью

Максвелловское распределение энергии по степеням свободы молекул газа. Внутренняя энергия идеального газа
В случае идеального газа число молекул в единице объема, имеющих значение компоненты скорости в интервале от vx до vx + dvx может быть представ

Характерные скорости молекул газа. Опыт Штерна
1.-наиболее вероятная скорость молекул

Больцмановское распределение частиц газа по потенциальной энергии. Распределение Максвелла-Больцмана.
Если газ находится во внешнем силовом поле, то частицы газа обладают потенциальной энергией eп . Распределение молекул идеального газа по высоте в однородном гравитационном поле.

Явление переноса: теплопроводность ИГ
Явления переноса в газах. Общие закономерности. Беспорядочность теплового движения молекул газа, непрерывные соударения между ними приводят к постоянному перемешиванию частиц и изменению и

Диффузия и внутреннее трение в идеальном газе
Явление переноса — диффузия — заключается в самопроизвольном взаимном проникновении и перемешивании частиц двух соприкасающихся газов, жидкостей и даже твердых тел. При этом различают самодиффузию

Первое начало термодинамики. Теплоемкость ИГ. Работа газа при изменении его объема
Первое начало термодинамики: Количество теплоты, сообщённое газу, идёт на приращение внутренней энергии газа и на совершенигазом работы над внешними телами.

Термодинамика изохорического процесса: V=const.
Рассмотрим закон, описывающий этот процесс, и его график в координатах (P,V). Этот закон является частным случаем уравнения Менделеева-Клапейрона (уравнения состояния идеального газа)

Термодинамика изотермического процесса: T=const.
Приведем закон, описывающий этот процесс, и его график в координатах (P,V). Рассмотрев два состояния идеального газа 1 и 2, получим

Термодинамика адиабатического процесса: dQ=0.
Адиабатический процесс - это процесс, протекающий без теплообмена с окружающей средой. Поскольку dQ = 0, то первое начало термодинамики принимает вид:

Политропические процессы
Политропическими процессами называются процессы, при которых теплоемкость газа остается постоянной. Найдем уравнение состояния идеального газа при политропическом процессе, т.е. уравнение

Второе начало термодинамики. Цикл Карно
  Второе начало термодинамики:Невозможно построить периодически действующую тепловую машину, которая бы всю подводимую к ней теплоту превращала в работу, т.е. всегда

Энтропия и 2-е начало трмодинамики
Энтропия – это такая функция состояния, дифференциал которой определяется отношением:

Реальный газ. Уравнение Ван-дер-Ваальса и его анализ. Критическое состояние и его параметры.
Реальный газ — газ, который не описывается уравнением состояния идеального газа Клапейрона — Менделеева. Зависимости между его параметрами показывают, что молекулы в реальном газе взаимоде

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги