рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Первое начало термодинамики. Теплоемкость ИГ. Работа газа при изменении его объема

Первое начало термодинамики. Теплоемкость ИГ. Работа газа при изменении его объема - раздел Образование, Основные положения молекулярно-кинетической теории. Масса и размер молекул Первое Начало Термодинамики: Количество Теплоты, Сообщённое Г...

Первое начало термодинамики:

Количество теплоты, сообщённое газу, идёт на приращение внутренней энергии газа и на совершенигазом работы над внешними телами.

- первое начало термодинамики

а) Внутренняя энергия идеального газа равна, где - количество вещества, i – число степеней свободы молекул газа, R – универсальная газовая постоянная, Т – термодинамическая температура. Тогда - изменение внутренней энергии газа. (1.2)

б) Вычислим работу, совершаемую газом при изменении объёма. Для этого рассмотрим газ, находящийся в цилиндре под поршнем, который может свободно перемещаться. При нагревании давление газа P , будет оставаться постоянным, и, как видно из рисунка, работа, которую совершает газ, будет равна: ,где dV = S dl - изменение объема газа. работа, совершаемая газом при изменении его объема. (1.3)

в) Найдём формулу для подсчёта количества теплоты, сообщенной газу массы m при его нагревании на dT. Для этого введем понятие молярной теплоёмкости газа:

Молярная теплоёмкость газа – это количество теплоты, сообщённой одному молю газа, для увеличения его температуры на один градус Кельвина.

Тогда формула для подсчёта теплоты будет иметь вид- теплота, сообщённая газу для

увеличения его температуры на dT. -первое начало термодинамики для изохорического процесса. первое начало термодинамики для изобарического процесса. dQ = dA - первое начало термодинамики при изотермическом процессе

Теплоемкость идеального газа

Согласно рассмотренной нами теории теплоемкости Cv и Cp газов должны быть целыми числами, кратными R/2, поскольку число степеней свободы может быть только целым. Поэтому даже малые расхождения между теоретическими и экспериментальными значениями Cv и Cp играют принципиальную роль. Такое расхождение можно обнаружить, если обратится к температурной зависимости теплоемкости газа. На рис. 1.8 изображена кривая зависимости молярной теплоемкости Cv от температуры Т, полученная опытным путем для водорода. Согласно теории теплоемкость не должна зависеть от температуры. Из рисунка 1.8 видно, что это оказывается справедливым только в пределах отдельных температурных интервалов, причем в различных интервалах теплоемкость имеет значения, соответствующие различному числу степеней свободы молекулы. Так, на участке 11Cv равно 3/2 R. Это означает, что молекула ведет себя, как система, обладающая только поступательными степенями свободы. На участке 22Cv равно 5/2 R. Следовательно, при температурах, соответствующих этому участку, у молекулы, в дополнение к проявившимся при более низких температурах трем поступательным степеням свободы, добавляются еще две вращательные. Наконец, при достаточно больших температурах (Т > 1000 К) теплоемкость Cv становится равной 7/2 R , что свидетельствует о наличии при этих температурах колебаний молекулы. В промежутках между указанными интервалами теплоемкость монотонно растет с температурой.

Объяснение такого поведения теплоемкости дается квантовой механикой. Как устанавливает квантовая теория, энергия вращательного и колебательного движений молекул оказывается квантованной. Это означает, что энергия вращения и энергия колебания молекулы могут иметь не любые значения, а только дискретные (т.е. отдельные, отличающиеся друг от друга на конечную величину) значения. Следовательно, энергия, связанная с этими видами движения, может меняться только скачками. Для энергии поступательного движения такого ограничения не существует.

Интервалы между колебательными уровнями энергии примерно в десять раз больше, чем между вращательными. Этим и объясняется тот факт, что при низких температурах молекулы участвуют только в поступательном движении, и Cv = 3/2 R. При повышении температуры наступает такой момент, когда молекулы вовлекаются во вращательное движение, и Cv = 5/2 R. Наконец, при дальнейшем повышении температуры (Т > 1000 К) молекулы будут участвовать также и в колебательном движении, и Cv = 7/2 R. Участки кривой 1’– 2 , 2’ – 3 означают, что не все молекулы сразу вовлекаются во вращательное (участок 1’– 2) движение, а также в колебательное (участок 2’– 3) движение.

Таким образом, классическая теория теплоемкости приблизительно верна лишь для отдельных температурных интервалов, причем каждому интервалу соответствует свое число степеней свободы молекулы.

Газ оказывает давление на любую стенку сосуда. Если стенка подвижна (например, поршень на рис. 1), то сила давления F совершит работу A, переместив поршень на расстояние DL. Если DL невелико, то давление газа останется примерно постоянным. Тогда работа будет равна:A = F•DL•cosa = P•S•DL, где S –площадь поршня, a - угол между направлением силы и перемещением поршня (a = 0). Произведение S•DL равно изменению объема газа DV от начального V1 до конечного V2значения, т.е. S•DL =DV = V1 - V2. Тогда A = P•(V2 - V1) = P•DV.В изобарном процессе расширения газа P = const. Следовательно, при любом сколь угодно большом увеличении объема сила давления газа на поршень будет постоянной, и формула работы сохранит свой вид A = P•(V2 - V1).Как видно из рисунка 2, работа газа при изобарном расширении равна площади под графиком процесса в координатах P, V. Если в процессе расширения давление газа изменяется, то для вычисления работы можно воспользоваться графическим методом (см. рис. 3). Пусть процесс расширения имеет вид, изображенный на рисунке. При любом малом изменении объема DV работа равна площади малого прямоугольника (на рис. 3 он заштрихован). Полная работа равна сумме площадей всех малых прямоугольников и равна площади фигуры, ограниченной линией, представляющей собой график процесса.

При сжатии газа внешними силами перемещение поршня DL противоположно силе давления газа F, тогда работа газа будет отрицательной величиной (DV < 0). Работа внешней силы A' в данном случае будет положительной, а величина A' = - A.

– Конец работы –

Эта тема принадлежит разделу:

Основные положения молекулярно-кинетической теории. Масса и размер молекул

М К т Изучает свойства вещества давление температуру и так далее как суммарный результат действий молекул при этом пользуется статическим...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Первое начало термодинамики. Теплоемкость ИГ. Работа газа при изменении его объема

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные положения молекулярно-кинетической теории
1. Все вещества состоят из мельчайших частиц - атомов и молекул. 2. Молекулы и атомы любого вещества находятся в непрерывном хаотическом движении, которое называется тепловым движением

Масса и размеры молекул
Для характеристики масс атомов и молекул применяются следующие величины: Атомная масса – масса атома вещества, выраженная в а.е.м. Молекулярная масса – масса

Термодинамические параметры и процессы. Урав-е сост-я идеального газа.
Для описания состояния термодинамической системы вводятся физические величины, которые называются термодинамическими параметрами или параметрами состояния системы. Обычно в качестве термодин

Основное ур-е молекулярно-кинетической теории гага.
1) Молекулы газа движутся только вдоль трех взаимно перпендикулярных направлений. Если в сосуде содержится N молекул, то в любой момент времени вдоль каждой из осей координат будет двигаться

Закон равномерного распределения энергии по степеням свободы. Внутренняя энергия ИГ
Числом степеней свободы i системы называется количество независимых величин, с помощью которых может быть задано положение системы. Так, положение в пространстве материальной точки полностью

Максвелловское распределение энергии по степеням свободы молекул газа. Внутренняя энергия идеального газа
В случае идеального газа число молекул в единице объема, имеющих значение компоненты скорости в интервале от vx до vx + dvx может быть представ

Характерные скорости молекул газа. Опыт Штерна
1.-наиболее вероятная скорость молекул

Больцмановское распределение частиц газа по потенциальной энергии. Распределение Максвелла-Больцмана.
Если газ находится во внешнем силовом поле, то частицы газа обладают потенциальной энергией eп . Распределение молекул идеального газа по высоте в однородном гравитационном поле.

Средняя длина свободного пробега молекул газа. Понятие о вакууме
Под средней длиной свободного пробега понимают среднее расстояние, которое проходит молекула между двумя последовательными соударениями. За секунду молекула в среднем проходит расстояние,

Явление переноса: теплопроводность ИГ
Явления переноса в газах. Общие закономерности. Беспорядочность теплового движения молекул газа, непрерывные соударения между ними приводят к постоянному перемешиванию частиц и изменению и

Диффузия и внутреннее трение в идеальном газе
Явление переноса — диффузия — заключается в самопроизвольном взаимном проникновении и перемешивании частиц двух соприкасающихся газов, жидкостей и даже твердых тел. При этом различают самодиффузию

Термодинамика изохорического процесса: V=const.
Рассмотрим закон, описывающий этот процесс, и его график в координатах (P,V). Этот закон является частным случаем уравнения Менделеева-Клапейрона (уравнения состояния идеального газа)

Термодинамика изотермического процесса: T=const.
Приведем закон, описывающий этот процесс, и его график в координатах (P,V). Рассмотрев два состояния идеального газа 1 и 2, получим

Термодинамика адиабатического процесса: dQ=0.
Адиабатический процесс - это процесс, протекающий без теплообмена с окружающей средой. Поскольку dQ = 0, то первое начало термодинамики принимает вид:

Политропические процессы
Политропическими процессами называются процессы, при которых теплоемкость газа остается постоянной. Найдем уравнение состояния идеального газа при политропическом процессе, т.е. уравнение

Второе начало термодинамики. Цикл Карно
  Второе начало термодинамики:Невозможно построить периодически действующую тепловую машину, которая бы всю подводимую к ней теплоту превращала в работу, т.е. всегда

Энтропия и 2-е начало трмодинамики
Энтропия – это такая функция состояния, дифференциал которой определяется отношением:

Реальный газ. Уравнение Ван-дер-Ваальса и его анализ. Критическое состояние и его параметры.
Реальный газ — газ, который не описывается уравнением состояния идеального газа Клапейрона — Менделеева. Зависимости между его параметрами показывают, что молекулы в реальном газе взаимоде

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги