рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Требования к материалам, используемым для получения отливок

Требования к материалам, используемым для получения отливок - раздел Образование, КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ Для Литья В Различной Степени Пригодны Все Металлы И Их Сплавы. Однако Чтобы ...

Для литья в различной степени пригодны все металлы и их сплавы. Однако чтобы качество отливок удовлетворяло техническим требованиям, сплавы, из которых изготовляются отливки, должны (удовлетворять) обладать следующими свойствами: жидкотекучестью, небольшой усадкой, незначительной газопоглощаемостью, 4- низкой ликвацией (однородностью структуры), 5- не слишком высокой температурой плавления, отсутствием неметаллических включений и т.д.

1. Жидкотекучесть- способность расплава свободно течь в литейной форме, заполняя её и точно воспроизводя все контуры. Она зависит от химического состава, температуры при заливке, а также наличия примесей и других факторов. Железоуглеродистые сплавы тем лучше заполняют форму, чем больше они содержат углерода, кремния, фосфора. Сера и хром понижают жидкотекучесть.

2. Усадка- свойство металлов и сплав уменьшать свой объем при затвердевании и охлаждении; при этом имеет место соответствующие изменения линейных размеров отливки. В результате усадки в теле отливки могут образовываться усадочные раковины и пористость. Величина усадки зависит от химического состава сплава, скорости его охлаждения, температуры заливки. Процент линейной усадки достигает в литейных чугунах 0,5-1%, в углеродистых сплавах 1,5-2%, алюминиевых сплавах 0,8-1,1%. Усадка чугунных отливок уменьшается с повышением графита в чугуне.

3. Ликвация - химическая неоднородность затвердевшего сплава. На неё оказывает такие факторы как химический состав сплава, конфигурация отливки, скорость охлаждения и т.д.

4. Газопоглощаемость- способность сплава в жидком состоянии растворять газы. При незначительной газопоглощаемости отливка будет плотной, без внутренних пустот, которые получаются в следствии выделения газов, растворенных в жидком сплаве и выделяемых при охлаждении. Кроме того, растворенные в расплаве газы при затвердевании и охлаждении могут выделяться в виде химических соединений. Растворимость газов зависит от химического состава сплава, температуры заливки, вязкости сплава и свойств литейной формы.

Для уменьшения газонасыщенности сплавов применяют плавку в вакууме или в среде инертных газов, а так же дегазацию вакуумириванием в специальных камерах и т.д.

Если металл или сплав обладает перечисленными свойствами, из него могут быть получены отливки высокого качества.

 

Литейные сплавы

1.Чугун является наиболее распространенным материалом для получения фасонных отливок. Чугунные отливки составляют около 80 % всех отливок.

Широкое распространение чугун получил благодаря хорошим технологическим свойствам и относительной дешевизне. Из серого чугуна получают самые дешевые отливки (в 1,5 раза дешевле, чем стальные, в несколько раз – чем из цветных металлов). Область применения чугунов расширяется вследствие непрерывного повышения его прочностных и технологических характеристик. Используют серые, высокопрочные, ковкие и легированные чугуны.

2.Сталь как литейный материал применяют для получения отливок деталей, которые наряду с высокой прочностью должны обладать хорошими пластическими свойствами. Чем ответственнее машина, тем более значительна доля стальных отливок, идущих на ее изготовление. Стальное литье составляет: в тепловозах – 40…50 % от массы машины; в энергетическом и тяжелом машиностроении (колеса гидравлических турбин с массой 85 тонн, иногда несколько сотен тонн) – до 60 %.

Стальные отливки после соответствующей термической обработки не уступают по механическим свойствам поковкам.

Используются: углеродистые стали 15Л…55Л; легированные стали 25ГСЛ, 30ХГСЛ, 110Г13Л; нержавеющие стали 10Х13Л, 12Х18Н9ТЛ и др.

Среди литейных материалов из сплавов цветных металлов широкое применение нашли медные и алюминиевые сплавы.

1.Медные сплавы – бронзы и латуни.

Латуни – наиболее распространенные медные сплавы. Для изготовления различной аппаратуры для морских судостроения, работающей при температуре 300ºС, втулок и сепараторов подшипников, нажимных винтов и гаек прокатных станов, червячных винтов применяют сложнолегированные латуни. Обладают хорошей износостойкостью, антифрикционными свойствами, коррозионной стойкостью.

Из оловянных бронз (БрО3Ц7С5Н1) изготавливают арматуру, шестерни, подшипники, втулки.

Безоловянные бронзы по некоторым свойствам превосходят оловянные. Они обладают более высокими механическими свойствами, антифрикционными свойствами, коррозионной стойкостью. Однако литейные свойства их хуже. Применяют для изготовления гребных винтов крупных судов, тяжело нагруженных шестерен и зубчатых колес, корпусов насосов, деталей химической и пищевой промышленности.

2.Алюминиевые сплавы.

Отливки из алюминиевых сплавов составляют около 70 % цветного литья. Они обладают высокой удельной прочностью, высокими литейными свойствами, коррозионной стойкостью в атмосферных условиях.

Наиболее высокими литейными свойствами обладают сплавы системы алюминий – кремний (Al-Si) – силумины АЛ2, АЛ9. Они широко применяются в машиностроении, автомобильной и авиационной промышленности, электротехнической промышленности.

Также используются сплавы систем: алюминий – медь, алюминий – медь – кремний, алюминий – магний.

3. Магниевые сплавы обладают высокими механическими свойствами, но их литейный свойства невысоки. Сплавы системы магний – алюминий – цинк – марганец применяют в приборостроении, в авиационной промышленности, в текстильном машиностроении.

 

Дефекты отливок, методы их обнаружения и исправления

Дефекты отливок по внешним признакам подразделяют: на наружные (песчаные раковины, перекос недолив); внутренние (усадочные и газовые раковины, горячие и холодные трещины).

Песчаные раковиныоткрытые или закрытые пустоты в теле отливки, которые возникают из-за низкой прочности формы и стержней, слабого уплотнения формы и других причин.

Перекос –смещение одной части отливки относительно другой, возникающее в результате небрежной сборки формы, износа центрирующих штырей, несоответствия знаковых частей стержня на модели и в стержневом ящике, неправильной установке стержня.

Недолив –некоторые части отливки остаются незаполненными в связи с низкой температурой заливки, недостаточной жидкотекучести, недостаточным сечением элементов литниковой системы.

Усадочные раковины –открытые или закрытые пустоты в теле отливки с шероховатой поверхностью и грубокристаллическим строением.

Возникают при недостаточном питании массивных узлов, нетехнологичной конструкции отливки, заливки перегретым металлом, неправильная установка прибылей.

Газовые раковины –открытые или закрытые пустоты с чистой и гладкой поверхностью, которая возникает из-за недостаточной газопроницаемости формы и стержней, повышенной влажности формовочных смесей и стержней, насыщенности расплавленного металла газами.

Трещины горячие и холодныеразрывы в теле отливки, возникающие при заливке чрезмерно перегретым металлом, из-за неправильной конструкции литниковой системы, неправильной конструкции отливок, повышенной неравномерной усадки, низкой податливости форм и стержней.

Методы обнаружения дефектов подразделяются на наружные и внутренние. Наружные дефекты отливок обнаруживаются внешним осмотром после извлечения отливки из формы или после очистки. Внутренние дефекты определяют радиографическими или ультразвуковыми методами дефектоскопии.

Незначительные дефекты исправляют заделкой замазками или мастиками, пропиткой различными составами, газовой или электрической сваркой.

Заделка замазками или мастиками – декоративное исправление мелких поверхностных раковин. Перед заполнением мастикой дефектные места очищают от грязи, обезжиривают. После заполнения исправленное место заглаживают, подсушивают и затирают пемзой или графитом.

Пропитывание применяют для устранения пористости. Отливки на 8…12 часов погружают в водный раствор хлористого аммония. Проникая в промежутки между кристаллами металла, раствор образует оксиды, заполняющий поры отливок. Для устранения течи отливки из цветных металлов пропитывают бакелитовым лаком.

Газовую и электрическую сварку применяют для исправления дефектов на необрабатываемых поверхностях (раковины, сквозные отверстия, трещины).

 

17.3. Технологические основы литейного производства

Технологический процесс производства отливок включает ряд операций, являющихся необходимыми, независимо от способа.

К таким операциям относятся:

- изготовление моделей;

- изготовление литейных форм по моделям;

- расплавление металла и заливки форм жидким металлом;

- охлаждение отливок, их извлечение из форм, очистка, обрубка и т.д.

Модели – приспособления, при помощи которых в формовочной смеси получают отпечатки полости, соответствующие наружной конфигурации отливок. Модели изготавливаются с применением деревянных, пластмассовых или металлических материалов, размеры и очертания которых соответствуют получаемым отливкам. Размеры модели выполняются по размерам несколько больше, по сравнению с деталью на величину линейной усадки сплава (для сталей 1,8-2%; чугуна- 0,8-1,2%). Если отливки подергают механической обработке, то предусматривается припуск на механическую обработку (5-0,7 мм на сторону для чугунного литья), что учитывается в размерах модели.

Модели из древесины обладают дешевизной, простотой изготовления, малой массой. Основной их недостаток- малая долговечность.

Металлические модели, по сравнению с деревянными, имеют большую долговечность и чистоту поверхности. Такие модели чаще всего изготавливаются из алюминиевых сплавов, поскольку имеют малую плотность, хорошо обрабатываются резанием, не окисляются.

Модели из пластмасс устойчивы к действию влаги, не подвергаются короблению, имеют хорошую чистоту поверхности.

Для изготовления отливок служит литейная форма, которая представляет собой систему элементов, образующих рабочую полость, при заливке которой расплавленным металлом формируется отливка.

Литейные формы изготовляют как из неметаллических материалов (песчано-глинистые формы, формы изготовляемые по выплавляемым моделям, оболочковые формы) для одноразового использования, так и из металлов (кокили, изложницы для центробежного литья) для многократного использования.

Отверстия и полости внутри отливок, а так же иные сложные контуры образуют при помощи стержней, устанавливаемых в формы при их сборке.

Стержни изготавливают из кварцевого песка и глины с добавлением продуктов переработки нефти, неорганических соединений (жидкое стекло, цемент и др.).

Песчано-глинистые смеси состоят из зёрен кварца различной величины, глины и небольшого количества различных окислов.

Песок в формовочных смесях повышает газопроницаемость. Глина обеспечивает связь между частицами песка и увеличивает устойчивость при повышении температуры. Глины для формовки обычно представляют собой горные породы, состоящие в основном из мелкодисперсных частиц водных силикатов алюминия, обладающих связывающей способностью во влажном состоянии и достаточной термохимической устойчивостью.

Литейные формы с добавками при сушке увеличивают газопроницаемость за счет сгорания добавок. Специальные добавки вводятся в смеси для повышения противопригарности и предотвращения прилипания смесей. В качестве противопригарных добавок применяют молотый каменный уголь, битум, мазут. Противопригарные материалы можно наносить тонким слоем на поверхность форм.

В состав смеси включается тонкая бывшая в употреблении формовочная смесь. Формы из песчано-глинистых смесей относятся к разовым. С помощью них получают, как правило, единичные крупногабаритные отливки.

Разовые формы могут выполняться объёмными (большой толщины) или оболочковыми (малой толщины). Последние изготавливаются из песчано-смоляных смесей с термореактивным связующим.

Оболочковые формы из термореактивных смесей состоят из чистого кварцевого песка и крепителя. Крепителями служат различные термореактивные смолы. Наибольшее распространение получил пульвербакелит, представляющий собой размельченную смесь формальдегидной смолы, бакелита и уротропина. Термореактивная смола при нагревании претерпевает изменения. Размягчение введенной в смесь смолы происходит при t=70-80 оС, при t=100-120 оС она плавиться, покрывая поверхность зерен песка тонкой клейкой пленкой. Последующий нагрев смолы до 200-250 оС вызывает ее необратимое затвердевание и, как следствие, существенное повышение прочности и жесткости оболочковой формы. В оболочковых формах отливают ответственные детали из чугуна, стали, цветных и специальных сплавов (блоки цилиндров двигателей, колончатые и распределенные валы, цистерны и т.д.).

Литьё в оболочковые формы имеет ряд преимуществ. Основные из них: высокая чистота поверхности отливок и точность размеров, меньший расход формовочных материалов, повышенная газопроницаемость. Недостатками метода можно назвать дефицитность и дорогую стоимостью пульвербакелита, необходимость повышенной вентиляции цеха из-за выделения фенола при заливке форм.

Формы, изготавливаемые по выплавляемым моделям, также относятся к разовым формам.

Постоянные формы (кокили) изготавливают из чугуна или стали. Их применяют в массовом и серийном производстве деталей не очень сложной формы и небольших размеров. Металлические формы имеют ряд преимуществ по сравнению с литьём в песчано-глинистых формах. В первую очередь следует отметить, такие как: более мелкозернистая структура металла в связи с быстрым остыванием в этой форме, большая точность размеров и чистота поверхности и, следовательно, точность размеров, выше производительность труда, трудозатраты, себе стоимость литья и т.д. Наряду с этим литьё в металлические формы имеет свои трудности: значительные затраты времени на изготовление формы, высокая теплопроводность форм затрудняет получение тонкостенных деталей, невозможно получить отливки, имеющие сложный внутренний и наружные очертания и т.д. Особенно сдерживает литьё в металлические формы относительно малая стойкость форм (кокилей) и их неподатливость, приводящая к возникновению трещин в отливках. Поэтому литьё в кокиль применяется в основном при изготовлении деталей из цветных сплавов. Для металлических форм применяются и металлические и реже песчаные стержни. Для предохранения рабочей поверхности кокиля от воздействия жидкого металла применяются облицовки, изготавливаемые из талька, огнеупорной глины, масла и различных связывающих материалов. Формы покрываются облицовочным слоем в 0,1-2,0 мм 1-2 раза в смену. Перед заливкой кокили покрываются краской, приготовленной на основе графита, угля и копоти ацетиленового пламени.

Готовые литейные формы заполняются подготовленным для заливки жидким металлом. Для плавления металла в литейном производстве используются вагранки, конверторы, электропечи дуговые и сопротивления и другие плавильные агрегаты.

Заполнение форм жидким металлом – это сложный процесс. Большое значение при заливке имеет температура металла, продолжительность заливки, размеры отливок, литейные свойства металла, очертания формы и литейная форма. Заливка форм осуществляется двумя способами:

- расплавленный металл подается в ковше к формам.

- формы, укладываются на конвейере и последовательно подводятся к неподвижному ковшу.

Остывшие отливки выбиваются из форм с помощью вибрационных машин. Образовавшиеся литники, через которые заливался металл, прибыли, выпоры удаляются (обрубка отливок). Очищаются места пригара смеси (очистка отливок). Если необходимо, отливки подвергаются термической обработке. Если обнаруживаются небольшие дефекты литья, то их устраняют всеми доступными методами: заваркой, пайкой, металлизацией, пропиткой, специальными составами и т.д.

 

 

17.4. Основные способы литья

 

Наиболее общая классификация литья металлов и сплавов осуществляется по виду применяемых литейных форм. По этому признаку различаются следующие способы литья:

1. литьё в песчано-глинистые формы;

2. литьё в металлические формы (кокиль);

3. литьё в оболочковые формы;

4. литье по выплавляемым моделям.

Кроме этого литьё классифицируется по способу заполнения жидким металлом литейной формы. Здесь различаются такие способы как:

1. Литье под давлением

2. Центробежное литье

3. Литье вакуумным всасыванием

4. Непрерывное и полунепрерывное

5. Электрошлаковое и т.д.

В современном литейном производстве все более широкое применение получают специальные способы литья: в оболочковые формы, по выплавляемым моделям, кокильное, под давлением, литье вакуумным всасыванием, центробежное, непрерывное и полунепрерывное и другие.

Эти способы позволяют получать отливки повышенной точности, с малой шероховатостью поверхности, минимальными припусками на механическую обработку, а иногда полностью исключают ее, что обеспечивает высокую производительность труда. Каждый специальный способ литья имеет свои особенности, определяющие области применения.

Литье под давлением, центробежное литье, литье вакуумным всасыванием относится к литью с применением внешних воздействий на жидкий и кристаллизующийся металл. Непрерывное и полунепрерывное, электрошлаковое – способы литья с непрерывным процессом формирования отливки. Литье в оболочковые формы, по выплавляемым моделям, литье в кокиль – способы литья в специальные формы.

Литье в песчано-глинистые формы является самым распространенным способом изготовления отливок. Изготавливают отливки из чугуна, стали, цветных металлов от нескольких грамм до сотен тонн, с толщиной стенки от 3…5 до 1000 мм и длиной до 10000 мм.

Для изготовления отливок данным способом применяют большое число различных приспособлений, которые называют литейной оснасткой. В комплект оснастки входят: модели, модельные плиты, стержневые ящики, и др. Технологический процесс литья в песчано-глинистые формы связан с большим грузооборотом вспомогательных материалов и очень трудоемок. Он включает подробные выполнения всех операций, перечисленных ранее, т.е. изготовление моделей, формовочных смесей и стержневых смесей, изготовление форм, заливку металла, удаление отливок из форм и их обработку.

Литейная форма для получения отливок в песчаных формах представлена на рис. 17.2.

Рис. 17.2. Литейная форма

 

Литейная форма обычно состоит из верхней 1 и нижней 2 полуформ, которые изготавливаются в опоках 7, 8 – приспособлениях для удержания формовочной смеси. Полуформы ориентируют с помощью штырей 10, которые вставляют в отверстия ручек опок 11.

Для образования полостей отверстий или иных сложных контуров в формы устанавливают литейные стержни 3, которые фиксируют посредством выступов, входящих в соответствующие впадины формы (знаки).

Литейную форму заливают расплавленным металлом через литниковую систему.

Литниковая система – совокупность каналов и резервуаров, по которым расплав поступает из разливочного ковша в полость формы. Различают литниковые системы с питателями, расположенными в горизонтальной и вертикальной плоскостях.

По способу подвода расплава в рабочую полость формы литниковые системы делят на: нижнюю, верхнюю, боковую.

Основными элементами являются: литниковая чаша 5, которая служит для приема расплавленного металла и подачи его в форму; стояк 6 – вертикальный или наклонный канал для подачи металла из литниковой чаши в рабочую полость или к другим элементам; шлакоуловитель 12, с помощью которого удерживается шлак и другие неметаллические примеси; питатель 13 – один или несколько, через которые расплавленный металл подводится в полость литейной формы.

Для вывода газов, контроля заполнения формы расплавленным металлом и питания отливки при ее затвердевании служат прибыли или выпор 4. Для вывода газов предназначены и вентиляционные каналы 9.

Изготовление несложной формы в двух опоках, т.е. в жестких рамках для предотвращения разрушения формы, производятся следующим образом: на подмодельную плиту устанавливают модель, затем модель припудривают тальком или графитом и опоку доверху наполняют формовочной смесью, утрамбовывают её, а излишек смеси удаляют линейкой (рис. 17.3). После этого опоку переворачивают вместе с плитой. Затем плиту снимают и на нижнюю опоку ставят верхнюю опоку а за плоскость разъема формы посыпают сухим кварцевым песком. Нижнюю опоку также наполняют формовочной смесью, установив предварительно литниковый стояк и выпор. Первый из них при извлечении стояка и выпора образует канал для заливки металла, а второй для выхода воздуха и газов. Далее осторожно разъединяют опоки на линии их соединения и в верхней опоке прорезают канал шлакоуловителя, а в нижней канал питателя, затем удаляют модель и вновь соединяют опоки. В результате форма готова для отливки. Для уплотнения смеси, удаления модели применяются машины.

В настоящее время применяются главным образом для отливки крупногабаритных, сложных и единичных изделий. Получаемые отливки не однородны по структуре металла, нуждаются в термообработке для выравнивания структуры, не отличаются чистотой поверхности, возможны значительные дефекты в виде пустот и др.

 

Рис. 17.3. Схема формовки пустотелой втулки: а – модель втулки: 1 – нижняя половина модели; 2 – верхняя половина модели; б – форма в нижней опоке, в – форма в верней опоке, г – собственная форма со стержнем.

 

Изготовление литейных форм

Основными операциями изготовления литейных форм являются: уплотнение формовочной смеси для получения точного отпечатка модели в форме и придание форме достаточной прочности; устройство вентиляционных каналов для вывода газов из полости формы; извлечение модели из формы; отделка и сборка формы. Различают ручную и машинную формовку.

Ручная формовка применяется для получения одной или нескольких отливок в условиях опытного производства, в ремонтном производстве, для крупных отливок массой 200…300 тонн.

Она может осуществляться, например, в двух опоках по разъемной модели (рис. 17.3).

Машинная формовка позволяет многократно повысить производительность труда, увеличить выход годных изделий и качество литейных форм. Используется в массовом и серийном производстве, а также для мелких серий и отдельных отливок.

Повышается производительность труда, улучшается качество форм и отливок, снижается брак, облегчаются условия работы.

Машинная формовка имеет следующие разновидности: уплотнение прессованием (осуществляемое в машинах с верхним и нижним прессованием); уплотнение смеси встряхиванием, осуществляемое за счет проявления инерционных сил при циклическом подъеме и падении стола с закрепленными на нем моделью и опокой; вакуумная формовка.

 

 

Специальные способы литья

В современном литейном производстве все более широкое применение получают специальные способы литья: в оболочковые формы, по выплавляемым моделям, кокильное, под давлением, центробежное и другие.

Эти способы позволяют получать отливки повышенной точности, с малой шероховатостью поверхности, минимальными припусками на механическую обработку, а иногда полностью исключают ее, что обеспечивает высокую производительность труда. Каждый специальный способ литья имеет свои особенности, определяющие области применения.

Литье в оболочковые формы

 

Литье в оболочковые формы - процесс получения отливок из расплавленного металла в формах, изготовленных по горячей модельной оснастке из специальных песчано-смоляных смесей.

Формовочную смесь приготовляют из мелкого кварцевого песка с добавлением термореактивных связующих материалов. Технологические операции формовки при литье в оболочковые формы представлены на рис. 17.4.

Металлическую модельную плиту 1 с моделью нагревают в печи до 200…2500C. Затем плиту 1 закрепляют на опрокидывающемся бункере 2 с формовочной смесью 3 (рис. 17.4 а) и поворачивают на 1800 (рис. 17.4 б). Формовочную смесь выдерживают на плите 10…30 секунд. Под действием теплоты, исходящей от модельной плиты, термореактивная смола в приграничном слое расплавляется, склеивает песчинки и отвердевает с образованием песчано-смоляной оболочки 4, толщиной 5…15 мм. Бункер возвращается в исходное положение (рис. 17.4 в), излишки формовочной смеси осыпаются с оболочки. Модельная плита с полутвердой оболочкой 4 снимается с бункера и прокаливается в печи при температуре 300…350ºC, при этом смола переходит в твердое необратимое состояние. Твердая оболочка снимается с модели с помощью выталкивателей 5 (рис. 17.4 г). Аналогичным образом получают вторую полуформу.

Рис 17.4. Технологические операции формовки при литье в оболочковые формы

 

Для получения формы полуформы склеивают или соединяют другими способами (при помощи скоб). Собранные формы небольших размеров с горизонтальной плоскостью разъема укладывают на слой песка. Формы с вертикальной плоскостью разъема 6 и крупные формы для предохранения от коробления и преждевременного разрушения устанавливают в контейнеры 7 и засыпают чугунной дробью 8 (рис. 17.4 д).

Литье в оболочковые формы обеспечивает высокую геометрическую точность отливок, малую шероховатость поверхностей, снижает расход формовочных материалов (высокая прочность оболочек позволяет изготавливать формы тонкостенными) и объем механической обработки, является высокопроизводительным процессом.

В оболочковых формах изготавливают отливки массой 0,2…100 кг с толщиной стенки 3…15 мм из всех литейных сплавов для приборов, автомобилей, металлорежущих станков.

 

Литье по выплавляемым моделям

Литье по выплавляемым моделям – процесс получения отливок из расплавленного металла в формах, рабочая полость которых образуется благодаря удалению (вытеканию) легкоплавкого материала модели при ее предварительном нагревании.

Технологические операции процесса литья по выплавляемым моделям представлены на рис. 17.5.

Выплавляемые модели изготавливают в пресс-формах 1 (рис. 17.5 а) из модельных составов, включающих парафин, воск, стеарин, жирные кислоты. Состав хорошо заполняет полость пресс-формы, дает четкий отпечаток. После затвердевания модельного состава пресс-форма раскрывается и модель 2 (рис. 17.5 б) выталкивается в холодную воду.

Затем модели собираются в модельные блоки 3 (рис. 17.5 в) с общей литниковой системой припаиванием, приклеиванием или механическим креплением. В один блок объединяют 2…100 моделей.

 

Рис. 17.5. Технологические операции процесса литья по выплавляемым моделям

 

Формы изготавливают многократным погружением модельного блока 3 в специальную жидкую огнеупорную смесь 5, налитую в емкость 4 (рис. 17.5г) с последующей обсыпкой кварцевым песком. Затем модельные блоки сушат на воздухе или в среде аммиака. Обычно наносят 3…5 слоев огнеупорного покрытия с последующей сушкой каждого слоя.

Модели из форм удаляют, погружая в горячую воду или с помощью нагретого пара. После удаления модельного состава тонкостенные литейные формы устанавливаются в опоке, засыпаются кварцевым песком, а затем прокаливают в печи в течение 6…8 часов при температуре 850…9500C для удаления остатков модельного состава, испарения воды (рис. 17.5 д)

Заливку форм по выплавляемым моделям производят сразу же после прокалки в нагретом состоянии. Заливка может быть свободной, под действием центробежных сил, в вакууме и т.д.

После затвердевания залитого металла и охлаждения отливок форма разрушается, отливки отделяют от литников механическими методами, направляют на химическую очистку, промывают и подвергают термической обработке.

Литье по выплавляемым моделям обеспечивает получение точных и сложных отливок из различных сплавов массой 0,02…15 кг с толщиной стенки 0,5…5 мм.

Недостатком является сложность и длительность процесса производства отливок, применение специальной дорогостоящей оснастки.

Литьем по выплавляемым моделям изготавливают детали для приборостроительной, авиационной и другой отраслевой промышленности. Используют при литье жаропрочных труднообрабатываемых сплавов (лопатки турбин), коррозионно-стойких сталей, углеродистых сталей в массовом производстве (автомобильная промышленность).

Технологический процесс автоматизирован и механизирован.

 

Литье в металлические формы

Литье в металлические формы (кокили) получило большое распространение. Этим способом получают более 40% всех отливок из алюминиевых и магниевых сплавов, отливки из чугуна и стали.

Литье в кокиль – изготовление отливок из расплавленного металла в металлических формах-кокилях.

Формирование отливки происходит при интенсивном отводе теплоты от расплавленного металла, от затвердевающей и охлаждающейся отливки к массивному металлическому кокилю, что обеспечивает более высокие плотность металла и механические свойства, чем у отливок, полученных в песчаных формах.

Все операции технологического процесса литья в кокиль механизированы и автоматизированы. Используют однопозиционные и многопозиционные автоматические кокильные машины.

Литье в кокиль применяют в массовом и серийном производствах для изготовления отливок из чугуна, стали и сплавов цветных металлов с толщиной стенки 3…100 мм, массой от нескольких граммов до нескольких сотен килограммов.

Литье в кокиль позволяет сократить или избежать расхода формовочных и стержневых смесей, трудоемких операций формовки и выбивки форм, повысить точность размеров и снизить шероховатость поверхности, улучшить механические свойства.

Недостатки кокильного литья: высокая трудоемкость изготовления кокилей, их ограниченная стойкость, трудность изготовления сложных по конфигурации отливок.

 

Изготовление отливок центробежным литьем

Применяется для изготовления чугунных труб и других небольших деталей, например гильз, колец (рис. 17.6). При этом способе центробежные силы оттесняют жидкий сплав к внутренней поверхности формы и уплотняются. Вращение формы может быть вокруг горизонтальной или вертикальной оси.

Рис. 17.6. Схема машин для центробежного литья: а – при горизонтальной оси вращения, б – при вертикальной оси вращения: 1 – вращающаяся форма, 2 – ковш, сменный желоб, 4 – электродвигатель.

 

Данный способ имеет следующие преимущества: исключается необходимость изготовления стержней для внутренних отверстий труб, отсутствует расход металла на литниковые системы, возможность получения двухслойных заготовок, что получается поочередной заливкой в форму различных сплавов (сталь – чугун, чугун – бронза) и т.д.

К недостаткам можно отнести ухудшение качества внутренней поверхности изделия и их точность, наличие усадочной пористости, ликватов и неметаллических включений на внутренних поверхностях; возможность появления дефектов в виде продольных и поперечных трещин, газовых пузырей.

Центробежным литьем изготавливают отливки из чугуна, стали, сплавов титана, алюминия, магния и цинка (трубы, втулки, кольца, подшипники качения, бандажи железнодорожных и трамвайных вагонов).

Масса отливок от нескольких килограммов до 45 тонн. Толщина стенок от нескольких миллиметров до 350 мм. Центробежным литьем можно получить тонкостенные отливки из сплавов с низкой текучестью, что невозможно сделать при других способах литья.

 

Литье под давлением

Литьем под давлением получают отливки в металлических формах (пресс-формах), при этом заливку металла в форму и формирование отливки осуществляют под давлением.

Отливки получают на машинах литья под давлением с холодной или горячей камерой прессования.

На машинах с горячей камерой прессования (рис. 17.7) камера прессования 2 расположена в обогреваемом тигле 1 с расплавленным металлом. При верхнем положении плунжера 3 металл через отверстие 4 заполняет камеру прессования. При движении плунжера вниз отверстие перекрывается, сплав под давлением 10…30 МПа заполняет полость пресс-формы 5. После затвердевания отливки плунжер возвращается в исходное положение, остатки расплавленного металла сливаются в камеру прессования, а отливка удаляется из пресс-формы выталкивателями 6.

Рис. 17.7. Схема изготовления отливки на машинах с горячей камерой прессования

 

При литье под давлением температура заливки сплава выбирается на 10…200C выше температуры плавления.

При этом способе устраняются такие недостатки литья в песочно-глинистые формы как: дефекты поверхности, пустоты; достигается точность размеров и формы, более высокая производительность, можно получать сложные по конфигурации и тонкостенные отливки, снижается трудоемкость. Применяется преимущественно для изготовления мелких деталей с использованием главным образом легкоплавких сплавов: алюминия, магния, цинка и др.

Недостатки: высокая стоимость пресс-формы и оборудования, ограниченность габаритных размеров и массы отливок (до 50 кг), наличие воздушной пористости в массивных частях отливки.

Данным способом изготавливают детали различных приборов, карбюраторов, алюминиевые блоки цилиндров, а также изделия, почти не требующие последующей механической обработки, в том числе и детали с готовой резьбой и др.

 

Изготовление отливок электрошлаковым литьем

Сущность процесса электрошлакового литья заключается в переплаве расходуемого электрода в водоохлаждаемой металлической форме (кристаллизаторе). При этом операции расплавления металла, его заливка и выдержка отливки в форме совмещены по месту и времени.

Схема изготовления отливок электрошлаковым литьем представлена на рис. 17.8.

В качестве расходуемого электрода используется прокат. В кристаллизатор 6 заливают расплавленный шлак 4 (фторид кальция или смесь на его основе), обладающий высоким электросопротивлением. При пропускании тока через электрод 7 и затравку 1 выделяется значительное количество теплоты, и шлаковые ванна нагревается до 1700ºC, происходит оплавление электрода. Капли расплавленного металла проходят через расплавленный шлак и образуют под ним металлическую ванну 3. Она в водоохлаждаемой форме затвердевает последовательно, образуя плотную без усадочных дефектов отливку 2. Внутренняя полость образуется металлической вставкой 5.

 

Рис. 17.8. Схема изготовления отливок электрошлаковым литьем

 

Расплавленный шлак способствует удалению кислорода, снижению содержания серы и неметаллических включений, поэтому получают отливки с высокими механическими и эксплуатационными свойствами.

Изготавливаются отливки ответственного назначения массой до 300 тонн: корпуса клапанов и задвижек атомных и тепловых электростанций, коленчатые валы судовых двигателей, корпуса сосудов сверхвысокого давления, ротора турбогенераторов.

 

Изготовление отливок непрерывным литьем

При непрерывном литье (рис. 17.9) расплавленный металл из металлоприемника 1 через графитовую насадку 2 поступает в водоохлаждаемый кристаллизатор 3 и затвердевает в виде отливки 4, которая вытягивается специальным устройством 5. Длинные отливки разрезают на заготовки требуемой длины.

Используют при получении отливок с параллельными образующими из чугуна, медных, алюминиевых сплавов. Отливки не имеют неметаллических включений, усадочных раковин и пористости, благодаря созданию направленного затвердевания отливок.

Рис. 17.9. Схема непрерывного литья (а) и разновидности получаемых отливок (б)

– Конец работы –

Эта тема принадлежит разделу:

КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ

ГОСУДАРСТВЕННОЙ ПРОТИВОПОЖАРНОЙ СЛУЖБЫ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Требования к материалам, используемым для получения отливок

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Ю.Г. Баскин, В.Ф. Глазков, Л.А. Королева, М.Н. Федотов
Материаловедение. Технология конструкционных материалов: учебное пособие /Под ред. В.С. Артамонова. – СПб.: Санкт-Петербургский университет Государственной противопожарной службы МЧС России, 2011 -

Характерные свойства металлов
В огромном ряду материалов, с незапамятных времен известных человеку и широко используемых им в своей жизни и деятельности, металлы всегда занимали особое место. Подтверждение этому и в на

Понятие об изотропии и анизотропии
Свойства тела зависят от природы атомов, из которых оно состоит, и от силы взаимодействия между этими атомами. Силы взаимодействия между атомами в значительной степени определяются расстояниями меж

Прочность металлов идеального и реальных строений. Виды дефектов кристаллической решетки
  Из жидкого расплава можно вырастить монокристалл. Их обычно используют в лабораториях для изучения свойств того или иного вещества. Металлы и сплавы, полученные в обычных у

Макро и микроанализ
  Различают макроструктуру, микроструктуру и тонкую структуру материалов. 1.Макроструктурный анализ – изучение строения металлов и сплавов невооруженным глазом или при

Термодинамические основы, механизм и кинетика кристаллизации металлов
Состояние вещества связано с условиями, в которых оно находится. Одно и тоже вещество в различных интервалах температур и давлений может находиться в состояниях, отличающихся друг от друга по своим

Параметры кристаллизации
  Размер зерна металла сильно влияет на его механические свойства. Эти свойства, особенно вязкость и пластичность, выше, если металл имеет мелкое зерно. Стремятся к получению

Механические свойства металлов и сплавов
Основными механическими свойствами являются прочность, упругость, вязкость, твердость. Зная механические свойства, конструктор обоснованно выбирает соответствующий материал, обеспечивающий надежнос

Напряжения и деформация
Деформацией называется изменение формы и размеров тела под действием напряжений. Напряжение – сила, действующая на единицу площади сечения детали. Напряжения и вызыв

Возвратная рекристаллизация структуры металла
  Деформированный металл находится в неравновесном состоянии. Переход к равновесному состоянию связан с уменьшением искажений в кристаллической решетке, снятием напряжений, что опреде

Понятия о сплавах и их теория
  Под сплавом понимают вещество, полученное сплавлением двух или более элементов. Возможны другие способы приготовления сплавов: спекания, электролиз, возгонка. В этом случае вещества

Термодинамические условия равновесия в двухкомпонентных сплавах
  Различают следующие виды диаграмм состояния двухкомпонентных сплавов: 1.Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии (сплавы

Влияние углерода и примесей на свойства стали.
  Стали являются наиболее распространенными материалами. Обладают хорошими технологическими свойствами. Изделия получают в результате обработки давлением и резанием. Достоинс

Виды термической обработки металлов
  Свойства сплава зависят от его структуры. Основным способом, позволяющим изменять структуру, а, следовательно, и свойства является термическая обработка. Основы термической

Превращения, протекающие в структуре стали при нагреве и охлаждении
  В результате термической обработки в сплавах происходят структурные изменения. После термообработки металлические сплавы могут находиться в равновесном (стабильном) и неравновесном

Закалка
Основными параметрами являются температура нагрева и скорость охлаждения. По температуре нагрева различают виды закалки: – полная, с температурой нагрева на 30…50

Обработка стали холодом
Высокоуглеродистые и многие легированные стали имеют температуру конца мартенситного превращения (Мк) ниже 0oС. Поэтому в структуре стали после закалки наблюдается знач

Поверхностная закалка стали, виды и область применения
  Конструкционная прочность часто зависит от состояния материала в поверхностных слоях детали. Одним из способов поверхностного упрочнения стальных деталей является поверхностная з

Химико-термическая обработка стали
  Химико-термическая обработка (ХТО) – процесс изменения химического состава, микроструктуры и свойств поверхностного слоя детали. Изменение химического состава поверх

Термомеханическая обработка стали
  Одним из технологических процессов упрочняющей обработки является термомеханическая обработка (ТМО). Термомеханическая обработка относится к комбинированным способам

Методы поверхностного упрочнения
Основное назначение методов механического упрочнения поверхности – повышение усталостной прочности. Методы механического упрочнения – наклепывание поверхностного слоя на глубину 0,2…0,4 мм

Конструкционные стали
Конструкционные материалы предназначены для изготовления деталей машин, конструкций и сооружений. К конструкционным сталям, применяемым для изготовления разнообразных деталей машин, предъя

Углеродистые стали
Низкоуглеродистые стали 05 кп, 08, 10, 10 пс обладают малой прочностью высокой пластичностью. Применяются без термической обработки для изготовления малонагруженных деталей – шайб, прокладок

Цементуемые и улучшаемые стали
Используются для изготовления деталей, работающих на износ и подвергающихся действию переменных и ударных нагрузок. Детали должны сочетать высокую поверхностную прочность, твердость и достаточную в

Стали для режущего инструмента
Инструментальная сталь должна обладать высокой твердостью, износостойкостью, достаточной прочностью и вязкостью (для инструментов ударного действия). Режущие кромки могут нагреваться до те

Высокопрочные стали
Высокопрочными называют стали, имеющие предел прочности более 1500 МПа, который достигается подбором химического состава и оптимальной термической обработки. Такой уровень прочности можно

Коррозионно-стойкие стали и сплавы
Разрушение металла под воздействием окружающей среды называют коррозией. Коррозия помимо уничтожения металла отрицательно влияет на эксплуатационные характеристики деталей, содейств

Жаростойкие и жаропрочные стали и сплавы
  Жаростойкость, жаростойкие стали и сплавы Жаростойкость (окалиностойкость) – это способность металлов и сплавов сопротивляться газовой коррозии при высоких температу

Магнитные стали и сплавы
Магнитотвердые стали и сплавы применяют для изготовления постоянных магнитов. Для постоянных магнитов применяют высокоуглеродистые стали с 1% C, легированные хромом (3%) EX3, а также одновременно х

Алюминий и его сплавы
Алюминий – легкий металл с плотностью 2,7 г/см3 и температурой плавления 660oС. Имеет гранецентрированную кубическую решетку. Обладает высокой тепло- и электропроводностью. Хи

Деформируемые магниевые сплавы
Магний плохо деформируется при нормальной температуре. Пластичность сплавов значительно увеличивается при горячей обработке давлением (360…520oС). Деформируемые сплавы маркируют МА1, МА8

Пресс-порошки и пресс-материалы
Пресс-порошками называются композиционные пластмассы с порошкообразным органическим и неорганическим наполнителем (древесная мука, целлюлоза, кварцевая мука, микроасбест и др.).

Высоконаполненные конструкционные пластмассы
К таким пластмассам относятся материалы, у которых доля наполнителя доходит до 70-75% от массы. В таких высоконаполненных материалах армирующий наполнитель вводится в виде листов, тканей, непрерывн

Газонаполненные пластмассы
Газонаполненные пластмассы это легкие и сверхлегкие материалы, которые получают вспениванием эмульсии и раствора полимера воздухом или газом, либо газами, выделяющимися в процессе отверждения полим

Резиновые материалы
Резинами называются высокомолекулярные материалы, которые получают при вулканизации смеси натурального или синтетического каучука с различными налолнителями. В состав резиновой смеси входят следующ

Клеящиеся материалы и герметики
Клеи и герметики относятся к пленкообразующим материалам и имеют много общего с ними. Эти растворы или расплавы полимеров, а также неорганические вещества, которые наносятся на какую-либо поверхнос

Электротехнические материалы
  Электротехнические материалы представляют собой совокупность про­водниковых. электроизоляционных, магнитных и полупроводниковых мате­риалов, предназначенных для работы в электрическ

Проводниковые материалы
К этой группе материалов относятся металлы и их сплавы. Чистые ме­таллы имеют малое удельное сопротивление. В качестве проводниковых материалов применяют медь, алюминий, редко - серебро. Исключение

Электроизоляционные материалы
Электроизоляционными материалами, или диэлектриками, называют та­кие материалы, с помощью которых осуществляют изоляцию, т. е. препятст­вуют утечке электрического тока между какими-либо токопроводя

Магнитные материалы
В зависимости от назначения различают магнитно-твердые и магнитно-мягкие материалы. Магнитно-твердые материалы применяют для изготовления постоянных магнитов. Они должны иметь высокие знач

Полупроводниковые материалы и изделия
К полупроводниковым материалам относится большое количество мате­риалов, отличающихся друг от друга внутренней структурой, химическим со­ставом и электрическими свойствами. Согласно химическому сос

Требования, предъявляемые материалам
  Автомобильные детали изготавливаются из углеродистых, легиро­ванных, специальных сталей, чугунов различной структуры, цветных сплавов, отливаемых на различной основе. Соответственно

Причины отказов
  Изменение технического состояния автомобилей, агрегатов и механизмов происходит под влиянием постоянно действующих причин, обусловленных работой самих механизмов, случайных: причин,

Виды изнашивания деталей
1)Механическое изнашивание происходит в результате механических воздействий. Оно имеет четыре подвида. Абразивное изнашивание проявляется вследствие попадания между трущимися поверхностями

Общая характеристика способов повышения надежности
Потребительский уровень каждого изделия, в том числе и автомобиля, оценивается его качеством, под которым, как правило, понимается надежность. Надежность работы машин в эксплуатации зависит от ряда

Мероприятия по повышению надежности конструкции
Основные конструктивные мероприятия, направленные на повышение надежности машин, могут быть сведены в такие группы: 1.Упрощение конструктивной схемы машины, уменьшение числа составляющих э

Технологические мероприятия повышения надежности
Расчетный уровень надежности, заложенный в машину на стадии проектирования в конструкторском бюро, должен быть обеспечен в процессе изготовления деталей и элементов, сборки и регулировки машин. Вст

Материалы, применяемые в машиностроении
  Железо и его сплавы, т. е. стали и чугуны, бесспорно, являются основными техническими материалами, которые используются в машиностроении. Второе место среди конструкционных материал

Технологические методы получения заготовок
При производстве автомобилей используется литье, обработка давлением, прокат, спекание, комбинированные методы получения заготовок. Различают литье в разовые и многоразовые формы. Р

Металлургическое производство и его продукция
  Современное металлургическое производство представляет собой комплекс различных производств, базирующихся на месторождениях руд и коксующихся углей, энергетических комплексах. Оно в

Производство чугуна
  Чугун – сплав железа и углерода с сопутствующими элементами (содержание углерода более 2,14 %). Исходными материалами для производства чугуна являются: железная руда; флюсы

Продукты доменной плавки
Передельный чугун предназначается для дальнейшего передела в сталь. На его долю приходится 90 % общего производства чугуна. Обычно такой чугун содержит 3,8…4,4 % углерода, 0,3…1,2 % кремния, 0,2…1

Важнейшие технико-экономические показатели работы доменных печей
1.Коэффициент использования полезного объёма доменной печи (КИПО) – это отношение полезного объема печи V (м3) к ее среднесуточной производительности Р (т)

Производство стали в кислородных конвертерах
  Кислородно-конвертерный процесс – выплавка стали из жидкого чугуна в конвертере с основной футеровкой и продувкой кислородом через водоохлаждаемую фурму. В настоящее время способ яв

Производство алюминия
Технология процесса производства алюминия состоит из трех этапов: 1.Извлечение глинозема из алюминиевых руд (бокситов) 2.Электролиз расплавленного глинозема с получение первичного

Общие положения
  Современное машиностроение широко использует детали из порошковых материалов. Порошковая металлургия - область техники, охватывающая совокупность методов и

Методы получения порошков и их подготовка
Типовая технологическая схема получения изделий методами порошковой металлургии включает: -производство порошков; -формование заготовки из порошка; -спекание заготовки;

Основные свойства порошков
Механические порошки характеризуются технологическими и физическими свойствами, а так же химическим составом. К технологическим свойствам порошков относятся: насыпной вес, текучесть и прес

Способы производства изделий из металлических порошков
Одним из главных этапов производства изделий из металлических порошков после их получения является формование заготовок. Формование – это придание порошковому материалу формы, размеров, плотности и

Напыление металлов
В последние годы для нанесения на детали защитных и упрочняющих покрытий, а также для восстановления изношенных поверхностей широкое применение нашло применение различных способов напыления. Все он

Особенности конструкции и технологичности отливок
При выборе способа литья для получения заготовки в первую очередь должен быть рассмотрен вопрос экономии металла. Металлоемкость можно снизить конструктивными и технологическими мероприятиями. Част

Формообразование машиностроительных профилей
  18.2. 1. Прокатное производство   Прокатка – это наиболее распространенный способ обработки пластическим деформированием. Прокатке подвергают до 90 % в

Продукция прокатного производства
Форма поперечного сечения называется профилем проката. Совокупность профилей различной формы и размеров - сортамент. В зависимости от профиля прокат делится на четыре основные группы: лист

Прессование
  Прессование – вид обработки давлением, при котором металл выдавливается из замкнутой полости через отверстие в матрице, соответствующее сечению прессуемого профиля.

Волочение
  Сущность процесса волочения заключается в протягивании заготовок через сужающееся отверстие (фильеру) в инструменте, называемом волокой. Конфигурация отверстия определяет форму полу

Оборудование для ковки
В качестве оборудования применяются ковочные молоты и ковочные прессы. Оборудование выбирают в зависимости от режима ковки данного металла или сплава, массы поковки и ее конфигурации. Необ

Холодная объемная штамповка
  Холодная штамповка производится в штампах без нагрева заготовок и сопровождается деформационным упрочнением металла. Холодная штамповка является одним из наиболее прогресси

Листовая штамповка
  Листовая штамповка – один из видов холодной обработки давлением, при котором листовой материал деформируется в холодном или подогретом состоянии. Листовой штамповкой

Композиционные материалы с нуль-мерными наполнителями
В композиционных материалах этого типа наибольшее распространение получила металлическая матрица из металла или сплава. Композиции на металлической основе упрочняются равномерно распределенными дис

Композиционные материалы с одномерными наполнителями
  В композиционных материалах этого типа упрочнителями являются одномерные элементы в форме нитевидных кристаллов, волокон (проволоки). Волокна и другие армирующие элементы скрепляютс

Эвтектические композиционные материалы
Эвтектическими композиционными материалами называют сплавы эвтектического или близкого к эвтектическому состава, в которых упрочняющей фазой выступают ориентированные кристаллы, образующиеся в проц

Изготовление деталей из полимерных композиционных материалов
В качестве матрицы в композиционных материалах на неметаллической основе используют отвержденные эпоксидные, полиэфирные, фенолополиамидные и другие смолы. Наиболее распространены композиции, армир

Обработка и соединение композиционных материалов
На практике часто возникает необходимость соединения деталей узлов из композиционных материалов между собой и с конструкциями, выполненными из металлов и сплавов. В этом случае задача сводится к об

Нанокристаллические материалы
Нанокристаллическими называют материалы с размерами кристал­лов (зерен или частиц) менее 100 нм. По комплексу свойств они существен­но отличаются от обычных материалов такого же химического

Технология изготовления резиновых изделий и область их применения
  Технология приготовления резиновых смесей состоит из ряда операций, выполняемых в определенной последовательности. Основные операции — подготовка ингредиентов, их смешивание и получ

Влияние условий эксплуатации на свойства резин
Пространственно-сетчатая структура вулканизированных резин определяет многие их свойства. Резинам свойственна большая обратимая деформация, достигающая 100%, при сравнительно низких напряжениях. Ст

Физико-химические основы сварки
  Сварка – технологический процесс получения неразъемных соединений материалов посредством установления межатомных связей между свариваемыми частями при их местном или общем на

Основные способы сварки и их особенности
В настоящее время известно более 70 способов сварки, отличающихся разнообразием технологических процессов. Это связано как с применением разных способов нагрева деталей (электрической дугой, газоки

Дуговая сварка
Несмотря на успех в разработке новых способов сварки, доминирующее положение занимает дуговая сварка, которая занимает до 60 % всего объема сварочных работ). Источником те

Электрошлаковая сварка
Сущность процесса заключается в том, что тепловую энергию, необходимую для расплавления основного и присадочного металла, дает теплота, выделяемая в объеме шлаковой ванны при прохождении через нее

Лучевые способы сварки
Электронно-лучевая сварка. Сущность процесса состоит в том, что свариваемые детали, собранные без зазора, помещают в вакуумную камеру и подают на них электродный луч – пучок электро

Газовая сварка
При газовой сварке заготовки 1 и присадочный материал 2 в виде прутка или проволоки расплавляют высокотемпературным пламенем 4 газовой горелки 3 (рис. 20.4).

Ультразвуковая сварка
Ультразвуковая сварка относится к процессам, в которых используют давление, нагрев и взаимное трение свариваемых поверхностей. Силы трения возникают в результате действия на заготовки, сжатые осево

Сварка взрывом
Большинство технологических схем сварки взрывом основано на использовании направленного взрыва. Соединяемые поверхности заготовок, одна из которых неподвижна и служит основанием, располага

Сварка трением
Сварка трением–способ сварки давлением при воздействии теплоты, возникающей при трении свариваемых поверхностей. Свариваемые заготовки устанавливают соосно в зажима

Контактная сварка
Контактная сварка относится к видам сварки с кратковременным нагревом места соединения без оплавления или с оплавлением и осадкой разогретых заготовок. Характерная особенность этих процессов – плас

Диффузионная сварка
Диффузионная сварка–способ сварки давлением в вакууме приложением сдавливающих сил при повышенной температуре. Свариваемые детали тщательно зачищают, сжимают, нагре

Специальные термические процессы в сварочном производстве
  Наплавка – процесс нанесения слоя металла или сплава на поверхность изделия. Наплавка позволяет получать детали с поверхностью, отличающейся от основного металла, на

Термическая резка металлов
Газокислородная резка заключается в сжигании металла в струе кислорода и удалении этой струей образующихся оксидов. При горении железа в кислороде выделяется значительное количество теплоты

Пайка металлов
Пайкой называют процесс соединения деталей посредством припоя – сплава, который смачивает поверхности деталей и, затвердевая, связывает их. Припой прочно соединяется с поверхностью изделия только т

Способы пайки по удалению оксидной пленки
Флюсовая пайка. Для обеспечения удаления оксидов с поверхности паяемых металлов и припоя, а также для предупреждения образования новых оксидов при нагреве в процессе пайки применяются паяльн

Способы пайки по кристаллизации паяного шва
Кристаллизация при охлаждении. Как правило, температура нагрева при пайке на 50—100° выше температуры плавления припоя. При этой температуре вследствие взаимодействия основного металла и при

Способы пайки по заполнению зазора
Капиллярная пайка. Пайка, при которой расплавленный припой заполняет паяльный зазор и удерживается в нем преимущественно поверхностным натяжением, называется капиллярной. Капиллярные явления

Способы пайки по источнику нагрева
Пайка в печи. Ее применение в производстве объясняется следующими факторами. 1.Высокой производительностью. 2.Высокой стабильностью качества паяного соединения. 3.

Способы пайки по получению припоя
Пайка готовым полностью расплавляемым припоем. Пайка, при которой используется заранее изготовленный припой, называется пайкой готовым припоем. Пайка композиционным припоем.

Технологический процесс пайки
Технологический процесс пайки включает комплекс выполняемых операций, основными из которых являются следующие: подготовка поверхностей под пайку; сборка деталей; укладка припоя, в ряде случаев нане

Склеивание деталей
  Склеиванием называют соединение деталей тонким слоем быстротвердеющего раствора – клея. Процесс склеивания состоит из подготовки соединяемых поверхностей деталей, нанесения к

Дефекты сварных и паяных соединений
При производстве сварных и паяных конструкций могут возникать дефекты, т. е. отдельные несоответствия продукции нормативным требо­ваниям. Влияние дефекта на работоспособность конструкции зависит не

Методы контроля качества сварных и паяных соединений
Методы контроля бывают двух типов: разрушающие и неразрушающие. К разрушающим относятся испытания сварных образцов-свидетелей. Сва­ривают их при тех же самых режимах, что и изделия, обычно

Заклепочные и прессовые соединения
Заклепочные соединения выполняют с помощью специальных крепежных деталей – заклепок (рис. 20.7 а, б) или непосредственным расклепыванием цапф деталей (рис. 20.7 в, г). Заклепка пред

Формирование качества поверхности технологическими методами
  Обеспечение требуемой шерохова­тости поверхности. Обыкновенно по­перечная шероховатость больше про­дольной (вдоль действия инструмен­та, в частности резца) и поэтому, когда говорят

Металлорежущие станки
Обработка ведется на металлорежущих станках, обеспечивающих: необходимое усилие резания; регулируемое относительное перемещение инструмента и детали в пространстве с требуемой скоростью, позволяюще

Точение
Точение является основным способом обработки поверхностей тел вращения.   Ри

Сверление
Сверление является основным способом получения глухих и сквозных цилиндрических отверстий в сплошном материале заготовки. В качестве инструмента при сверлении используется сверло, имеющее

Протягивание
Протягивание является высокопроизводительным методом обработки деталей разнообразных форм, обеспечивающим высокую точность формы и размеров обрабатываемой поверхности. Применяется протягивание в кр

Фрезерование
Фрезерование – высокопроизводительный и распространенный метод обработки поверхностей заготовок: многолезвийным режущим инструментом – фрезой (рис. 22. в). Главным движением при фрезерован

Строгание
Обработка строганием характеризуется прямолинейным возвратно-поступательным главным движением и прерывистым движением подачи. Главное возвратно-поступательное движение состоит из двойных ходов. Во

Шлифование
Шлифование – процесс обработки заготовок резанием с помощью инструментов (кругов), состоящих из абразивного материала (рис. 22.1 е,ж). Абразивные зерна расположены беспорядочно. При

Хонингование
Применяют для получения отверстий высокой точности, малой шероховатости и высокой степени цилиндричности, а также для создания на стенках специфического микропрофиля, способствующего лучшему удержа

Суперфиниширование
Является окончательным методом тонкой обработки, в процессе которого получается особо гладкая поверхность. При этом значительно снижается высота микронеровностей. Поверхности обрабатывают

Полирование
Полированием уменьшают шероховатость поверхности. Этим способом получают зеркальный блеск на ответственных частях деталей (дорожки качения подшипников) либо на декоративных элемента

Притирка
Притиркой (доводкой) обрабатываются плоские, осесимметричные и фасонные поверхности. Этот метод позволяет достигнуть наивысшей степени точности и наименьшей шероховатости поверхности. Процесс осуще

Ультразвуковая обработка
Позволяет обрабатывать не только токопроводные материалы, как сказано выше, но и токонепроводящие материалы в том числе хрупкие и твердые, например, алмаз, азотированные стали, полупроводники (крем

Выбор способов обработки
Каждая деталь может быть представлена в виде сочетания таких элементарных поверхностей, как: плоскости. Цилиндры, конусы, торы и пр. Более сложные поверхности: винтовые, шлицевые, зубчатые и другие

ЗАКЛЮЧЕНИЕ
  Металлы относятся к числу наиболее распространенных материалов, которые человек использует для обеспечения своих жизненных потребностей. В настоящее время всё большее применение нах

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги